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Abstract

Given a set of data X=(X1,…,Xn) and a statistic T(X), a key statistical question is
about the distribution of T(X). The bootstrap is a general technique which gives estimates of
this distribution for any X and T by substituting raw computing power for analytical
expertise. The computing, a Monte Carlo calculation of an expectation, can be quite lengthy,
especially in problems where T is itself a complex computation. Typical problems require 50-
200 bootstrap replications to estimate a standard error and 1000-2000 replications to compute
a bootstrap confidence interval. These numbers assume that the bootstrap estimation is done
in the most obvious way. Various computational and probabilistic methods have been
suggested to reduce the number of replications required. The classical importance sampling
estimate is well-suited for variance reduction in rare event applications. It fails in many other
applications. The ratio and regression estimates, well-known in sampling theory, succeed in
many of these cases. In our work we have done various simulations in linear models to
determine the needed number of the bootstrap replications. We have calculated bootstrap
estimation for OLS estimators in linear regression when errors are homoscedastic or
heteroscedastic. In this case we have used the bootstrap with residual resampling and
bootstrap with vector resampling. We have concluded that the needed number of bootstrap
replications is about 300-500.
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1. Introduction

Given a set of data X=(X1,…,Xn) and a statistic T(X), a key statistical question is
“What is the behavior (distribution) of T(X)”? The answer to, or even the ability to answer,
that question often determines our choice of a statistic T. The bootstrap (Efron, (1979, 1982))
is a general technique which gives estimates of this distribution for any X and T by
substituting raw computing power for analytical expertise. The computing, a Monte Carlo
calculation of an expectation, can be quite lengthy, especially in problems where T is itself a
complex computation. Such T is often the very ones where the bootstrap technique is most
welcome, since they represent cases for which theoretical attacks are hopeless.

For those with a finite computer budget two questions immediately arise “How many
Monte Carlo trials are necessary to achieve a sufficiently accurate answer?” and “Can a better
accuracy/trial ratio be obtained using some modified calculation?”

Typical problems require 50-200 bootstrap replications to estimate a standard error
and 1000-2000 replications to compute a bootstrap confidence interval. These numbers
assume that the bootstrap estimation is done in the most obvious way. Various computational
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and probabilistic methods have been suggested to reduce the number of replications required.
The promise of such methods is not only a reduction of the computational burden, but also a
deeper understanding of the bootstrap. Various methods of improved bootstrap for reducing
the number of bootstrap replications appear in Johns (1988), Graham et al. (1990),
Ogbonmwan and Wynn (1986), Therneau (1983), Hesterberg (1988), Efron (1987, 1990),
DiCiccio and Efron (1990). But, these methods fail in some cases in regression estimates
(Therneau (1983)).

In our work we have done various simulations in linear models to determine the
needed number of the bootstrap replications. We have calculated bootstrap estimation for
standard errors in linear regression when errors are homoscedastic or heteroscedastic. In this
case we have used the ordinary bootstrap and block bootstrap. We have determined
empirically that the adequate estimation of variance or standard error in linear regression
require 300-500 bootstrap replications. In Section 2 we have made the notion of bootstrap
estimation of the variance and its Monte Carlo approximation. In this section we have
discussed about the errors occurred in bootstrap estimation. In Section 3 we have given
bootstrap with residual resampling and vector resampling in linear regression. In Section 4
we have shown the simulations results in linear regression with homoscedastic and
heteroscedastic errors.

2. The bootstrap and importance sampling

Given a statistic T and a data sample X=(X1,…,Xn) from F, the actual variance of
T(X) is

varFT(X)=EF(T-EFT(X)2. (1)

Since F is in practice unknown, this number is, of course, unobtainable. The bootstrap

estimates simply replace F with the empirical distribution function
n

1
mass:F̂ at xi, i=1,...,n.

Let ),...,(xX **
1

*
nx is a data sample from this distribution. This is a bootstrap sample. The

bootstrap variance of T(X) is
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There are thus two sources of error in the bootstrap estimate of variance:

a) T(X)varT(X)var FBOOT  , because FF̂  ,

b) T(X)varv̂ BOOT , because B .

The error of the second type, which is the concern of this paper, can be very important
in the bootstrap. We can, therefore find a series of efficient bootstrap techniques intended to
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reduce or quantify some of these errors. From a wider perspective we can find methods like:
the centering method of Efron (1990), the linear bootstrap introduced by Davison et al.
(1986), the control function estimates, discussed by Therneau (1988), the balanced bootstrap
by  Davison et al. (1986) and Graham et al. (1990), the accelerated procedures outlined by
Ogbonmwan and Wynn (1986).

Other methods include the Monte Carlo device of importance sampling.  Importance
sampling in Monte Carlo simulation is the process of estimating a distribution using
observations from a different distribution. Importance sampling has been very successful as a
variance reduction technique in rare event applications.  It can also be applied in many other
applications, as a variance reduction technique, as a means of solving problems that are
otherwise intractable, or for analyzing the performance or a physical process under multiple
input distribution using a single data set observations, as in the response surface estimation or
in the analysis of robust estimates. Introduced by Therneau (1988), in the context of the
bootstrap estimation, it has been used by Johns (1988) in a quantile problem, by Hinkley and
Shi (1989) in a double bootstrap problem, and has been widely reviewed by Hesterberg
(1988).

The classical importance sampling estimate is well-suited for variance reduction in
rare event applications. It fails in many other applications. The ratio and regression estimates,
well-known in sampling theory, succeed in many of these cases. To avoid this problem, we
have determined by empiric method the adequate number of bootstrap replication in linear
regression.

3. Bootstrap methods in linear models

Bootstrap methods in linear models were first considered by Efron (1979, 1982) and
then have been examined in greater depth by Freedman (1991), Freedman and Peters (1984),
Hinkley (1988), Wu (1986), Moulton and Zeger (1991). These methods may be used for
estimating the variability of estimators and are particularly useful in situations with small
sample sizes. Freedman (1991) showed that the bootstrap approximation of the least squares
estimates is valid. Let we see some aspects about bootstrapping of a linear model.

Let us take the model

i
T
ii eβxy  , i=1,...,n, (4)

where T
ix , i=1,...,n is a kx1 fixed or random vector, β is a kx1 vector of unknown

parameters, ei, i=1,...,n are errors with mean zero and variance 2σ . Writing Y=(y1,...,yn)
T,

e=(e1,...,en)
T, X=[x1,...,xn]

T, the model (1) can be written as below
Y=Xβ +e, E(e)=0, 2σvar(e)  . (5)

The ordinary OLS for β is given by   YXXXβ̂ T1T 
 . Let us describe two methods

for bootstrapping the given linear model.

3.1 Residual resampling

Resampling of residuals requires that T
ix , i=1,...,n is a kx1 fixed vector, ei, i=1,...,n

are independent and identically random variables, so the errors are homoscedastic. Let us

have the residuals vector β̂X-yr  . We construct the empirical distribution function

n

1
mass:F̂ at ri, i=1,...,n, where ri, i=1,...,n are the elements of the residual vector.
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We draw randomly B bootstrap samples from F̂ . So, we have the vectors *b
ir ,

b=1,...,B. We calculate *b*b rβ̂XY  , b=1,…,B and then obtain   b*T1Tb* YXXXβ̂ 
 ,

b=1,...,B. The Monte Carlo approximations for the covariance matrix of β̂ is

  T(.)*b*
B

1b

(.)*b**
r β̂β̂β̂β̂

1-B

1
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

, (6)
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


B

1b
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B

1β̂ .

3.2 Vector resampling

Turn now to the correlation method, when the matrix X is nor fixed, but is random.
Here, we find, in general some dependence between errors and the matrix X. this case is
inappropriate to resample the residuals. We construct the empirical distribution function

n

1
mass:F̂ at  T

ii x,y , i=1,...,n. We draw randomly B bootstrap samples from F̂ and have

 *bT
i

*b
i x,y , b=1,...,B. Then   b*bT*1b*bT*b* YXXXβ̂ 

 . Then we use
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where 



B

1b

b*(.)* β̂
B

1β̂ to take Monte Carlo approximation for the covariance matrix of β̂ .

4. Simulation results

Simulation 4.1 Let we have the model

i3i2ii
T
ii u0.6x0.4x10.0uβxy  , i=1, ..., 20, (8)

ui=0.25ei, ei is a random variable with normal standard distribution N(0,1) and the matrix X
of observations is known (Judge et al. (1988)). In this case the errors are homoscedastic.
After calculations we find that the true standard deviations of OLS estimators for parameters
β are respectively 0.2025, 0.0833, 0.1245. In the following tables we can see the bootstrap

approximations *
xy

*
r  var,var of standard deviations of iβ̂ , i=1,2,3 for different values of

bootstrap replications.
B 100 500 1000 1200

1β 0.2096 0.2058 0.2116 0.2088

2β 0.0838 0.0871 0.0867 0.0857

3β 0.1290 0.1270 0.1320 0.1307

Table 1. The bootstrap approximations *
rvar of OLS estimator standard deviations for

different values of bootstrap replications.

B 100 500 1000 1200

1β 0.2072 0.2265 0.2290 0.2147

2β 0.1002 0.1078 0.1131 0.1056

3β 0.1354 0.1361 0.1349 0.1325
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Table 2. The bootstrap approximations *
xyvar of OLS estimator standard deviations for

different values of bootstrap replications.

From these results we concluded that the adequate number of bootstrap replications in
linear regression is about 300-500 bootstrap replications. In the following simulations we
have done 500 replications for the bootstrap with residual resampling and 300 replications for
the bootstrap with vector resampling.

To study the variability of bootstrap approximations, we calculated for 100 different

simulations the quantity 


100

1i

i

 valuetrue

 valuetruetapprox.boo

100

1
. In Table 3 we see a good

variability in estimations results of the OLS standard deviations.

*
rvar *

xyvar

1β -0.03 -0.05

2β -0.03 -0.01

3β -0.03 -0.03

Table 3. The variability of the bootstrap approximations of OLS estimator standard
deviation.

In Table 4 we see the variability for the approximation bootstrap of the covariance
OLS estimators matrix of unknown parameters β . The symbol (i,j) shows the covariance

between iβ̂ and jβ̂ .

(1,1) (1,2) (1,3) (2,2) (2,3) (3,3)
*
rvar -0.03 0.00 -0.04 -0.04 -0.11 -0.04
*
xyvar -0.04 0.03 -0.06 0.01 0.44 -0.03

Table 4. The variability of the bootstrap approximations of OLS estimator covariance
matrix.

Simulation 4.2 Now, let suppose that the errors are heteroscedastic in the form
)xx0.0625(1)var(u 2

3i
2
2ii  , i=1,...,20. In the following tables we can see the standard

deviations and the covariance matrix of OLS estimators for unknown parameter β .

*
rvar *

xyvar

1β 0.13 0.03

2β 0.00 -0.01

3β -0.01 -0.02

Table 5. The variability of the bootstrap approximations of OLS estimator standard
deviations.
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(1,1) (1,2) (1,3) (2,2) (2,3) (3,3)
*
rvar 0.33 0.31 0.11 0.03 -0.20 0.02
*
xyvar 0.11 0.12 0.05 0.03 -0.21 0.00

Table 6. The variability of the bootstrap approximations of OLS estimation variance

Simulation 4.3 We have the model (8) and the errors are of the form i1ii eρuu   ,

where ei has normal distribution N(0,0.0625) and 1ρ  . In the following tables we can see

the standard deviations and the covariance matrix of OLS estimators for unknown parameter
β .

 0.999 0.99 0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20
(1,1) -0.99 -0.92 -0.69 -0.53 -0.39 -0.35 -0.32 -0.28 -0.22 -0.15 -0.08
(1,2) -0.73 -0.62 -0.26 0.02 0.27 0.36 0.38 0.36 0.30 0.22 0.13
(1,3) -2.80 -2.47 -1.45 -0.78 -0.23 -0.03 0.05 0.07 0.06 0.03 0.00
(2,2) 1.22 1.10 0.69 0.38 0.11 0.03 0.01 0.03 0.06 0.09 0.12
(2,3) -1.20 -1.18 -1.13 -1.10 -1.14 -1.21 -1.29 -1.37 -1.49 -1.72 -2.43
(3,3) 2.96 2.72 1.89 1.28 0.72 0.49 0.36 0.29 0.24 0.20 0.16

 0.10 0.08 0.05 0.001 0.00 -0.00 -0.05 -0.10 -0.20 -0.30 -0.40
(1,1) -0.02 -0.01 0.01 0.03 0.03 0.03 0.05 0.06 0.07 0.05 0.00
(1,2) 0.05 0.03 0.00 -0.04 -0.04 -0.04 -0.08 -0.12 -0.20 -0.27 -0.33
(1,3) -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 0.02 0.08 0.16
(2,2) 0.12 0.12 0.11 0.10 0.10 0.10 0.08 0.05 -0.03 -0.13 -0.24
(2,3) -177 -5.67 -1.71 -0.35 -0.34 -0.32 0.12 0.36 0.60 0.73 0.81
(3,3) 0.11 0.09 0.07 0.04 0.04 0.04 0.00 -0.04 -0.13 -0.24 -0.35

 -0.50 -0.60 -0.70 -0.80 -0.90 -0.95 -0.99 -0.99
(1,1) -0.08 -0.17 -0.26 -0.35 -0.41 -0.48 -0.78 -0.97
(1,2) -0.36 -0.37 -0.32 -0.24 -0.46 -10.3 -1.22 -1.01
(1,3) 0.26 0.36 0.44 0.51 0.59 0.68 0.90 0.99
(2,2) -0.37 -0.50 -0.62 -0.71 -0.77 -0.77 -0.82 -0.96
(2,3) 0.87 0.91 0.94 0.96 0.97 0.97 0.98 0.99
(3,3) -0.47 -0.57 -0.66 -0.73 -0.79 -0.83 -0.93 -0.99

Table 7. The variability of the bootstrap approximations *
rvar of OLS estimator

covariance matrix.

 0.999 0.99 0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20
(1,1) -0.98 -0.87 -0.53 -0.32 -0.21 -0.22 -0.24 -0.23 -0.19 -0.11 -0.02
(1,2) -2.10 -1.88 -1.16 -0.65 -0.15 0.08 0.19 0.21 0.16 0.04 -0.10
(1,3) -4.02 -3.48 -1.87 -0.88 -0.15 0.09 0.20 0.24 0.24 0.21 0.18
(2,2) 1.84 1.70 1.18 0.78 0.44 0.35 0.37 0.46 0.58 0.69 0.76
(2,3) -0.25 -0.33 -0.57 -0.73 -0.95 -1.27 -1.71 -2.26 -3.00 -4.19 -7.24
(3,3) 3.08 2.78 1.75 0.99 0.38 0.25 0.24 0.28 0.32 0.34 0.33

 0.10 0.08 0.05 0.00 0.00 -0.00 -0.05 -0.10 -0.20 -0.30 -0.40
(1,1) 0.07 0.09 0.12 0.16 0.16 0.16 0.19 0.22 0.25 0.24 0.17
(1,2) -0.29 -0.33 -0.39 -0.49 -0.49 -0.49 -0.60 -0.70 -0.88 -1.04 -1.13
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(1,3) 0.13 0.12 0.11 0.09 0.09 0.09 0.08 0.07 0.07 0.10 0.16
(2,2) 0.79 0.78 0.78 0.76 0.76 0.75 0.72 0.67 0.53 0.35 0.14
(2,3) -712 -25.0 -9.11 -3.65 -3.59 -3.54 -1.71 -0.76 0.20 0.65 0.88
(3,3) 0.28 0.26 0.24 0.19 0.19 0.19 0.14 0.08 -0.04 -0.18 -0.31

 -0.50 -0.60 -0.70 -0.80 -0.90 -0.95 -0.99 -0.99
(1,1) 0.06 -0.08 -0.21 -0.31 -0.36 -0.41 -0.74 -0.96
(1,2) -1.15 -1.08 -0.93 -0.76 -1.03 -14.5 -1.31 -1.02
(1,3) 0.24 0.33 0.41 0.47 0.53 0.63 0.88 0.98
(2,2) -0.08 -0.29 -0.48 -0.62 -0.68 -0.68 -0.76 -0.95
(2,3) 1.00 1.05 1.07 1.06 1.02 1.00 0.99 0.99
(3,3) -0.44 -0.56 -0.66 -0.73 -0.77 -0.80 -0.92 -0.99

Table 8. The variability of the bootstrap approximations *
xyvar of OLS estimator

covariance matrix.

From Tables 7 and 8 we see bad estimations for the covariance between 2β̂ and 3β̂ .

This happened because the true value of this parameter is very small in absolute value.
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