Spectral Properties and Tensor Products for quasi-class A_n^*

Ilmi Hoxha and Naim L. Braha

Department of Mathematics and Computer Sciences, Avenue "Mother Theresa " 5, Prishtine, 10000, Kosova E-mail address:ilmihoxha011@hotmail.com, nbraha@yahoo.com.

Abstract:

In this article we will define the quasi-class A_n^* operator. An operator $T \in L(H)$, is said to belong to quasi-class A_n^* operator if

$$T^{*}\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^{*}|^{2}\right)T \ge 0$$

for some positive integer n. We denote the set of $*-\text{class } A_n$ by $Q(A_n^*)$. If T is A_n^* , then $T \in Q(A_n^*)$. Also, if n=1, then $Q(A_1^*)$ operators coincides with $Q(A^*)$ operators.

We will show basic structural properties and some spectral properties of this class of operators. We show that, if $T \in A_n^*$ then $\dagger_{jp}(T) = \dagger_p(T)$, $\dagger_{ja}(T)$, $\{0\} = \dagger_a(T)$, $\{0\}$, $T-\}$ has finite ascent for all $\} \in$, where it follows that T has SVEP. Also, we will prove here Browder's theorem, a-Browders theorem, and Tensor Products for quasi-class A_n^* operator.

AMS Mathematics Subject Classification (2000): 47B20, 47B37.

Key words and phrases: quasi-class A_n^* operator, SVEP, Ascent, Browder's theorem, *a* – Browders theorem, Tensor Products.

1. Introduction

Throughout this paper, let H be an infinite dimensional separable complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let L(H) denote the C^* algebra for all bounded operators on H. We shall denote the set of all complex numbers and the complex conjugate of a complex number ~ by and ~ , respectively. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \sim I$ to $T - \sim$. For $T \in L(H)$, we denote by kerT the null space and by T(H) the range of T. We write r(T) = dimkerT, $s(T) = \text{dimker}T^* = \text{dim}\overline{T(H)}^{\perp}$, and $\dagger(T)$ for the spectrum of T. We write r(T) for the spectral radius. It is well known that

 $r(T) \le ||T||$. The operator T is called normaloid, if r(T) = ||T||. For an operator $T \in L(H)$, as usual, $|T| = (T^*T)^{\frac{1}{2}}$ and $[T^*,T] = T^*T - TT^*$ (the self-commutator of T). An operator $T \in L(H)$ is said to be normal, if $[T^*,T]$ is zero, and T is said te be hyponormal, if $[T^*,T]$ is nonnegative (equivalently if $|T| \ge |T^*|$). An operator $T \in L(H)$ is said to be paranormal [11], if $||Tx||^2 \le ||T^2x||$ for any unit vector x in H. Further, T is said to be *-paranormal [4], if $||T^*x||^2 \le ||T^2x||$ for any unit vector x in H. T is said to be k-paranormal operator if $||Tx||^{k+1} \le ||T^{k+1}x||||x||^k$ and T is said to be k-*-paranormal operator if $||T^*x||^{k+1} \le ||T^{k+1}x||||x||^k$. If T is k-*-paranormal, then T is (k+1)-paranormal operator. If T is k-paranormal operator, then T is normaloid [9].

T. Furuta, M. Ito and T. Yamazaki [12] introduced a very interesting class of bounded linear Hilbert space operators: class A defined by $|T^2| \ge |T|^2$, which is called the absolute value of T, and they showed that the class A is a subclass of paranormal operators. B. P. Dugall, I. H. Jeon, and I. H. Kim [10], introduced *-class A operator. An operator $T \in L(H)$ is said to be a *-class A operator, if $|T^2| \ge |T^*|^2$. A *-class A is a generalization of a hyponormal operator, [10, Theorem 1.2], and *-class A is a subclass of the class of *-paranormal operators, [10, Theorem 1.3]. We denote the set of *-class A by A*. An operator $T \in L(H)$ is said to be a quasi-*-class A operator, if $T^*|T^2|T \ge T^*|T^*|^2 T$, [17]. We denote the set of quasi-*-class A by Q(A*). T. Furuta and J. Haketa [13], introduced n-perinormal operator: an operator $T \in L(H)$, is said to be nperinormal operator [6], if $T^{*n}T^n \ge (TT^*)^n$, for each $n \ge 1$. For n = 1, T is hyponormal operator, while, if T is 2-*-perinormal operator, then T is *-paranormal operator. If T is n-*perinormal operator, then T is (n+1)-perinormal operator. In [20], Panayappan et al. define

classes A_n operator: an operator $T \in L(H)$, is said to be A_n operator if $|T^{n+1}|^{\frac{2}{n+1}} \ge |T|^2$, for some positive integer n.

An operator $T \in L(H)$, is said to belongs to *-class A_n operator if

$$|T^{n+1}|^{\frac{2}{n+1}} \ge |T^*|^2$$

for some positive integer n.

We denote the set of *- class A_n by A_n^* . If n=1, then A_1^* coincides with the class A^* operator. If T is (n+1)-*-perinormal operator, then T is class A_n^* . If $T \in A_n^*$, then T is k-*-paranormal operator.

2. Spectral Properties of Quasi Class A^{*}_n Operator

Definition 2.1. An operator $T \in L(H)$, is said to belong to quasi-class A_n^* operator if

$$T^{*}\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^{*}|^{2}\right)T\geq 0$$

for some positive integer n.

We denote the set of *- class A_n by $Q(A_n^*)$.

If T is A_n^* , then $T \in Q(A_n^*)$. Also, if n=1, then $Q(A_1^*)$ operators coincides with $Q(A^*)$ operators.

Lemma 2.2. [14, Hansen Inequality] If $A, B \in L(H)$, satisfying $A \ge 0$ and $||B|| \le 1$, then $(B^*AB)^{\mathsf{u}} \ge B^*A^{\mathsf{u}}B$ for all $\mathsf{u} \in (0,1]$.

Theorem 2.3. Let $T \in L(H)$ be a class $Q(A_n^*)$ operator for a positive integer n, T not have a dense range, and T let have the following representation

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad \text{on } \mathbf{H} = \overline{T(\mathbf{H})} \oplus \ker T^*.$$

Then A is a class A_n^* on $\overline{T(H)}$, C=0 and $\dagger(T) = \dagger(A) \cup \{0\}$.

Proof. Let P be the projection of H onto $\overline{T(H)}$, where $A = T|_{\overline{T(H)}}$ and $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP$. Since $T \in Q(A_n^*)$, we have

$$P\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^*|^2\right)P\geq 0.$$

We remark,

$$P | T^* |^2 P = PTT^*P = \begin{pmatrix} AA^* + BB^* & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} |A^*|^2 + |B^*|^2 & 0\\ 0 & 0 \end{pmatrix}$$

and by Hansen Inequality, we have

$$P | T^{n+1} |_{n+1}^{\frac{2}{n+1}} P = P \left(T^{*(n+1)} T^{(n+1)} \right)^{\frac{1}{n+1}} P \le \left(P T^{*(n+1)} T^{(n+1)} P \right)^{\frac{1}{n+1}} = \left((TP)^{*(n+1)} (TP)^{(n+1)} \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}} 0 \\ 0 & 0 \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}} 0 \\ 0 & 0 \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}} 0 \\ 0 & 0 \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}} 0 \\ 0 & 0 \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}} \right)^{\frac{1}{n+1}} = \left(| A^{n+1} |_{n+1}^{\frac{2}{n+1}$$

Then,

$$\begin{pmatrix} |A^{n+1}|^{\frac{2}{n+1}} & 0\\ 0 & 0 \end{pmatrix} \ge P |T^{n+1}|^{\frac{2}{n+1}} P \ge P |T^*|^2 P = \begin{pmatrix} |A^*|^2 + |B^*|^2 & 0\\ 0 & 0 \end{pmatrix} \ge \begin{pmatrix} |A^*|^2 & 0\\ 0 & 0 \end{pmatrix}$$

so A is A_n^* operator on $\overline{T(H)}$.

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in H = \overline{T(H)} \oplus \ker T^*$$
. Then,
 $\langle Cx_2, x_2 \rangle = \langle T(I-P)x, (I-P)y \rangle = \langle (I-P)x, T^*(I-P)y \rangle = 0$

thus $T^* = 0$.

By [15, Corollary 7], $\dagger(A) \cup \dagger(C) = \dagger(T) \cup [$, where [is the union of the holes in $\dagger(T)$, which happen to be a subset of $\dagger(A) \cap \dagger(C)$ and $\dagger(A) \cap \dagger(C)$ has no interior points. Therefore $\dagger(T) = \dagger(A) \cup \dagger(C) = \dagger(A) \cup \{0\}$.

The converse of the above theorem is valid.

Theorem 2.4. Let T be the operator on $H = \overline{T(H)} \oplus \ker T^*$ defined as $T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$. If A belongs to class A_n^* operator, then T is quasi-class A_n^* . **Proof**. We have

Let $v = x \oplus y$ be a vector in $H = \overline{T(H)} \oplus \ker T^*$, where $x \in \overline{T(H)}$ and $y \in \ker T^*$. Then

$$\left\langle T^{*} \left((T^{*(n+1)}T^{n+1})^{\frac{1}{n+1}} - TT^{*} \right) Tv, v \right\rangle$$

$$= \left\langle A^{*} \left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^{*} \right| \right) Ax, x \right\rangle + \left\langle A^{*} \left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^{*} \right| \right) By, x \right\rangle$$

$$+ \left\langle B^{*} \left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^{*} \right| \right) Ax, y \right\rangle + \left\langle B^{*} \left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^{*} \right| \right) By, y \right\rangle$$

$$= \left\langle \left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^{*} \right| \right) (Ax + By), (Ax + By) \right\rangle \ge 0,$$

because A is A_n^* operator, $\left(\left| A^{n+1} \right|^{\frac{2}{n+1}} - \left| A^* \right| \right) \ge 0$. Hence T is quasi-class A_n^* operator.

Theorem 2.5. If $T \in Q(A_n^*)$ for a positive integer n and M be a closed T-invariant subspace, then the restriction $T_{|_M}$ is also $T \in Q(A_n^*)$ operator.

Proof. Let P be the projection of H onto M. Thus we can represent T as the following matrix with respect to the decomposition $M \oplus M^{\perp}$, $T = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$.

Put
$$A = T \mid_{M}$$
 and we have $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP$. Since $T \in Q(A_n^*)$, we have

$$PT^* \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) PT \ge 0.$$

We remark,

$$PT^* |T^*|^2 TP = PT^*P |T^*|^2 PTP = PT^*PTT^*PTP = \begin{pmatrix} A^* |A^*|^2 A + |B^*A|^2 & 0\\ 0 & 0 \end{pmatrix} \ge \begin{pmatrix} A^* |A^*|^2 A & 0\\ 0 & 0 \end{pmatrix}$$

and by Hansen inequality, we have

$$PT^* | T^{n+1} |_{n+1}^{\frac{2}{n+1}} TP = PT^* P \left(T^{*(n+1)} T^{(n+1)} \right)^{\frac{1}{n+1}} PTP \le PT^* \left(PT^{*(n+1)} T^{(n+1)} P \right)^{\frac{1}{n+1}} TP = \left(A^* & 0 \\ 0 & 0 \right)^{\frac{1}{n+1}} \left(A & 0 \\$$

Then,

$$\begin{pmatrix} A^* \mid A^{n+1} \mid \stackrel{2}{\xrightarrow{n+1}} A & 0\\ 0 & 0 \end{pmatrix} \ge PT^* \mid T^{n+1} \mid \stackrel{2}{\xrightarrow{n+1}} TP \ge PT^* \mid T^* \mid^2 TP \ge \begin{pmatrix} A^* \mid A^* \mid^2 A & 0\\ 0 & 0 \end{pmatrix}$$

so A is $Q(A_n^*)$ operator on M.

A complex number } is said to be in the point spectrum $\dagger_p(T)$ of T if there is a nonzero $x \in H$ such that (T -)x = 0. If in addition, $(T -)^*x = 0$, then } is said to be in the joint point spectrum $\dagger_{jp}(T)$ of T. Clearly $\dagger_{jp}(T) \subseteq \dagger_p(T)$. In general $\dagger_{jp}(T) \neq \dagger_p(T)$.

There are many classes of operators which

$$\dagger_{jp}(T) = \dagger_p(T) \tag{1}$$

for example, if T is either normal or hyponormal operator. In [25] Xia showed that if T is a semihyponormal operator then holds (1). Dugall et.al extended this result to *-paranormal operators in [10]. In [17] the authors this result extended to quasi-class A^{*}. Uchiyama, [24] showed that if T is class A operator then non zero points of $\dagger_{jp}(T)$ and $\dagger_p(T)$ are identical. The same thing is true for many operators' classes as well.

Here, we will tell that the equality (1) holds for class $T \in Q(A_n^*)$ operator.

Theorem 2.6. If $T \in Q(A_n^*)$ and (T -)x = 0, then $(T -)^*x = 0$ for all $\{ \in ... \}$

Proof. We may assume that $x \neq 0$. Let M be a span of $\{x\}$. Then M is an invariant subspace of T and let $T = \begin{pmatrix} 3 & B \\ 0 & C \end{pmatrix}$ on $H = M \oplus M^{\perp}$.

Let P be the projection of H onto M, where $T|_{M} = \} \neq 0$. For the proof, it is sufficient to show that B=0. Since $T \in Q(A_{n}^{*})$ we have

$$P\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^*|^2\right)P \ge 0$$

By Hansen Inequality, we have

$$\begin{pmatrix} | \} |^{2} & 0 \\ 0 & 0 \end{pmatrix} = \left(PT^{*(n+1)}T^{(n+1)}P \right)^{\frac{1}{n+1}} \ge P\left(T^{*(n+1)}T^{(n+1)}\right)^{\frac{1}{n+1}}P = P |T^{n+1}|^{\frac{2}{n+1}}P \ge P |T^{*}|^{2} P = \begin{pmatrix} | \} |^{2} + |B^{*}|^{2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$T = P |D^{*}|^{2} P = \left(PT^{*(n+1)}P \right)^{\frac{1}{n+1}} \ge P\left(T^{*(n+1)}T^{(n+1)}\right)^{\frac{1}{n+1}}P = P |T^{n+1}|^{\frac{2}{n+1}}P \ge P |T^{*}|^{2} P = \left(PT^{*}|^{2} P \right)^{\frac{2}{n+1}} P = \left(PT^{*}|^{$$

Thus, B=0.

Corollary 2.7. If $T \in Q(A_n^*)$, then $\dagger_{jp}(T) = \dagger_p(T)$.

Corollary 2.8. If $T \in Q(A_n^*)$, then $S(T - \}) \leq r(T - \})$ for all $\} \in .$

Proof. It is obvious from Theorem 2.6.

Theorem 2.9. If $T \in Q(A_n^*)$ and $\Gamma, S \in \uparrow_p(T)$ with $\Gamma \neq S$, then $\ker(T - \Gamma) \perp \ker(T - S)$. **Proof.** Let $x \in \ker(T - \Gamma)$ and $y \in \ker(T - S)$. Then $Tx = \Gamma x$ and Ty = S y. Therefore $\Gamma\langle x, y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle = \overline{S} \langle x, y \rangle$,

then $\langle x, y \rangle = 0$. Therefore, $\ker(T - \Gamma) \perp \ker(T - S)$.

Theorem 2.10. If $T \in Q(A_n^*)$ has the representation $T = \} \oplus A$ on $ker(T - \}) \oplus ker(T - \})^{\perp}$, where $\}$ is an eigenvalue of T, then A belongs to class $Q(A_n^*)$, with $ker(A - \}) = \{0\}$.

Proof. Since
$$T = \} \oplus A$$
, then $T = \begin{pmatrix} \} & 0 \\ 0 & A \end{pmatrix}$ and we have

$$T^* |T^{n+1}|^{\frac{2}{n+1}} T - T^* |T^*|^2 T = \\
\begin{pmatrix} \}^4 & 0 \\ 0 & A^* |A^{n+1}|^{\frac{2}{n+1}} A \end{pmatrix} - \begin{pmatrix} \}^4 & 0 \\ 0 & A^* |A^*|^2 A \end{pmatrix} = \begin{pmatrix} \}^4 & 0 \\ 0 & A^* |A^{n+1}|^{\frac{2}{n+1}} A - A^* |A^*|^2 A \end{pmatrix}$$
Since $T \in Q(A_n^*)$, then $A \in Q(A_n^*)$.
Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \ker(A - \})$, then
 $(T - \}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & A - \} \end{pmatrix} \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$

so $x \in \ker(T - \})$, therefore x=0.

Lemma 2.11. [5, Holder-McCarthy inequality] Let T be a possitive operator. Then the following inequalities hold for all $x \in H$

1). $\langle T^r x, x \rangle \leq \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for 0 < r < 1, 2) $\langle T^r x, x \rangle \geq \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for $r \ge 1$.

A complex number } is said to be in the approximate point spectrum $\dagger_a(T)$ of T if there is a sequence $\{x_n\}$ of unit vectors satisfying $(T-\})x_n \to 0$. If in additions $(T-\})^*x_n \to 0$ then } is said to be in the joint approximate point spectrum $\dagger_{ja}(T)$ of operator T. Clearly $\dagger_{ia}(T) \subseteq \dagger_a(T)$. In general $\dagger_{ia}(T) \neq \dagger_a(T)$.

There are many classes of operators for which

 $\dagger_{ia}(T) = \dagger_a(T) \tag{2}$

for example, if T is either normal or hyponormal operator. In [25] Xia showed that if T is a semihyponormal operator then holds (2). Dugall et.al extended this result to *-paranormal operators in [10]. Cho and Yamazaki in [7] showed that if T is class A operator, then nonzero points of $\dagger_{ja}(T)$ and $\dagger_a(T)$ are identical. In the following, we will show that if $T \in Q(A_n^*)$, then nonzero points of $\dagger_{ja}(T)$ and $\dagger_a(T)$ and $\dagger_a(T)$ are identical.

Theorem 2.12. If T is of the class $Q(A_n^*)$ operator, and $(T -)x_m \to 0$ for $\} \neq 0$, then $(T -)^*x_m \to 0$.

Proof. Let T be a class $Q(A_n^*)$ operator and $||(T-\})x_m || \to 0$. We may assume that $||x_m|| = 1$. By the assumption $(T-\})x_m \to 0$, from

$$T^{k} = (T - \} + \})^{k} = \sum_{i=1}^{k} {k \choose i} \}^{k-i} (T - \})^{i} + \}^{k}, \text{ for } k \in ,$$

we have $(T^{2+n} - \}^{2+n}) x_m \to 0$.

$$\| T^{2+n} x_m \| - | \} |^{2+n} \le \| (T^{2+n} - \}^{2+n}) x_m \|$$
$$\| T^{2+n} x_m \| \to | \} |^{2+n}$$
(3)

hence

Moreover

$$\left\| T^{*} \right\} x_{m} \| - \| T^{*} (T - \}) x_{m} \| \le \| T^{*} T x_{m} \|.$$
(4)

So

Since $T \in Q(A_n^*)$, by Holder-McCarthy inequality, we get

$$\|T^{*}Tx_{m}\|^{2} = \left\langle T^{*} | T^{*} |^{2} Tx_{m}, x_{m} \right\rangle \leq \left\langle T^{*} | T^{1+n} |^{\frac{2}{1+n}} Tx_{m}, x_{m} \right\rangle \leq \left\langle |T^{1+n}|^{2} Tx_{m}, Tx_{m} \right\rangle^{\frac{1}{1+n}} \|Tx\|^{\frac{2n}{n+1}} = \|T^{2+n}x_{m}\|^{\frac{2}{1+n}} \|Tx\|^{\frac{2n}{n+1}}$$

So,

$$||T^*Tx_m|| \le ||T^{2+n}x_m||^{\frac{1}{1+n}} ||Tx||^{\frac{n}{n+1}}$$

Then it follows from (3), (4) and (5) that $\lim_{x \to \infty} \sup \|T^*x\|$

$$\limsup_{m\to\infty} \|T^*x_m\| \le |\}|.$$

Since

$$\left\| (T-\})^* x_m \right\|^2 = \langle T^* x_m, T^* x_m \rangle - \overline{\}} \langle x_m, T^* x_m \rangle - \frac{1}{2} \langle T^* x_m, x_m \rangle + | \right\} |^2 =$$
$$\| T^* x_m \|^2 - \overline{\}} \langle Tx_m, x_m \rangle - \frac{1}{2} \langle x_m, Tx_m \rangle + | \right\} |^2 = \| T^* x_m \|^2 - \overline{\}} \langle (T-\}) x_m, x_m \rangle - \frac{1}{2} \langle x_m, (T-\}) x_m \rangle - | \right\}$$

 $|^{2}$

then

 $\limsup_{m \to \infty} \| (T - \})^* x_m \|^2 \le |\} |^2 - |\} |^2 = 0.$

This implies $(T - \})^* x_m \rightarrow 0$.

Corollary 2.13. If T is of the class
$$Q(A_n^*)$$
 operator, then $\dagger_{ia}(T)$, $\{0\} = \dagger_a(T)$, $\{0\}$.

Lemma 2.14.[3] Let T = U | T | be the polar decomposition of T, $\} \neq 0$ and $\{x_m\}$ a sequence of vectors. Then the following assertions are equivalent:

1). $(T-\frac{1}{2})x_m \rightarrow 0$ and $(T^*-\frac{1}{2})x_m \rightarrow 0$,

2). $(|T|-||) |x_m \to 0 \text{ and } (U-e^{i_r})x_m \to 0,$

3). $(|T^*|-| \} |)x_m \to 0$ and $(U^* - e^{-i_*})x_m \to 0$.

Theorem 2.15. If T is of the class $Q(A_n^*)$ operator and $\} \in \dagger_a(T)$, $\{0\}$ then $|\} \models \dagger_a(|T|) \cap \dagger_a(|T^*|)$.

Proof. If $\} \in \uparrow_a(T)$, $\{0\}$, then by Theorem 2.12., there exists a sequence of unit vectors $\{x_m\}$ such that $(T-\})x_m \to 0$ and $(T-\})^*x_m \to 0$. Hence, from Lemma 2.14. we have $|\} \models \uparrow_a(|T|) \cap \uparrow_a(|T^*|)$.

Let $Hol(\dagger(T))$ be the space of all analytic functions in an open neighborhood of $\dagger(T)$. We say that $T \in L(H)$ has the single valued extension property at $\} \in$, if for every

open neighborhood U of } the only analytic function $f: U \rightarrow$ which satisfies equation $(T - \})f(\}) = 0$, is the constant function f\equiv 0. The operator T is said to have SVEP if T has SVEP at every $\} \in$. An operator $T \in L(H)$ has SVEP at every point of the resolvent $...(T) = , \dagger(T)$. Every operator T has SVEP at an isolated point of the spectrum.

For $T \in L(H)$, the smallest nonnegative integer p such that $\ker T^p = \ker T^{p+1}$ is called the ascent of T and is denoted by p(T). If no such integer exists, we set $p(T) = \infty$. We say that $T \in L(H)$ is of finite ascent (finitely ascensive) if $p(T - \frac{1}{2}) < \infty$, for all $\frac{1}{2} \in ...$

Corollary 2.16. If T is of the class $Q(A_n^*)$ operator, then $T - \}$ has finite ascent for all $\} \in .$

Proof. We have to tell that $\ker(T - \}) = \ker(T - \})^2$. To do that, it is sufficient enough to show that $\ker(T - \})^2 \subseteq \ker(T - \})$, since $\ker(T - \}) \subseteq \ker(T - \})^2$ is clear.

Let $x \in \ker(T - \frac{1}{2})^2$, then $(T - \frac{1}{2})^2 x = 0$. From Theorem 2.6. we have $(T - \frac{1}{2})^* (T - \frac{1}{2}) x = 0$. Hence,

 $\| (T - \}) x \|^{2} = \langle (T - \})^{*} (T - \}) x, x \rangle = 0,$

so we have (T -)x = 0, which implies $\ker(T -)^2 \subseteq \ker(T -)$.

Corollary 2.17. If T is of the class $Q(A_n^*)$ operator, then T has SVEP.

Proof. Proof, obvious from [2, Theorem 2.39].

An operator $T \in L(H)$ is called an upper semi-Fredholm, if it has a closed range and $r(T) < \infty$, while T is called a lower semi-Fredholm if $S(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$\operatorname{ind}(T) = \operatorname{r}(T) - \operatorname{s}(T).$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $ind(T) \le 0$, while T is said to be lower semi-Weyl operator if it is lower semi-Fredholm and $ind(T) \ge 0$. An operator is said to be Weyl operator if it is Fredholm of index zero.

The Weyl spectrum and the essential approximate spectrum are defined by $\uparrow_w(T) = \{\} \in : T - \}$ is not Weyl},

and

 $\dagger_{uw}(T) = \{\} \in : T - \}$ is not upper semi-Weyl}.

An operator $T \in L(H)$ is said to be upper semi-Browder operator, if it is upper semi-Fredholm and $p(T) < \infty$. An operator $T \in L(H)$ is said to be lower semi-Browder operator, if it is lower semi-Fredholm and $q(T) < \infty$. An operator $T \in L(H)$ is said to be Browder operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

 $\dagger_b(T) = \{\} \in : T - \}$ is not Browder},

and

 $\dagger_{ub}(T) = \{\} \in : T - \}$ is not upper semi-Browder $\}$.

Theorem 2.18. If T or T^* belongs to class $Q(A_n^*)$, then $\dagger_w(f(T)) = f(\dagger_w(T))$ for all $f \in Hol(\dagger(T))$.

Proof. The inclusion $f(\dagger_w(T)) \subseteq \dagger_w(f(T))$ holds for any operator. Let $T \in Q(A_n^*)$, then T has SVEP, then from [2, Theorem 4.19] holds $\dagger_w(f(T)) \subseteq f(\dagger_w(T))$. If $T^* \in Q(A_n^*)$, similar to above.

The following concept has been introduced in 1997 by Harte and W.Y. Lee [16]: A bounded operator T is said to satisfy Browder's theorem if $\dagger_w(T) = \dagger_b(T)$.

Theorem 2.19. If T or T^* belongs to class $Q(A_n^*)$, then f(T) satisfy Browder's theorem for all $f \in Hol(\uparrow(T))$.

Proof. Since T or T^* has SVEP, then from [2, Theorem 4.22] f(T) satisfies Browder's theorem for all $f \in Hol(\uparrow(T))$.

The following concept has been introduced in 2000, [8]: A bounded operator T is said to satisfy a-Browder's theorem if $\dagger_{uw}(T) = \dagger_{ub}(T)$.

Theorem 2.20. If T or T^* belongs to class $Q(A_n^*)$, then a-Browder's theorem holds for f(T) and $f(T)^*$ for all $f \in Hol(\dagger(T))$.

Proof. Since T or T^* has SVEP, then from [2,Theorem 4.33] f(T) and $f(T)^*$ satisfies Browder's theorem for all $f \in Hol(\dagger(T))$.

3. Tensor products for quasi *-class A_n

Let H and K denote the Hilbert spaces. For given non zero operators $T \in L(H)$ and $S \in L(K)$, $T \otimes S$ denotes the tensor product on the product space $H \otimes K$. The normaloid property is invariant under tensor products, [22]. There exist paranormal operators T and S, such that $T \otimes S$ is not paranormal, [1]. In [23], Stochel proved $T \otimes S$ is normal, if and only if, T and S are normal. This result was extended to class A operators, *-class A operators, class A_n operators and quasi class A_n operators in [18], [10], [20], and [21] respectively. In this section, we prove an analogues result for $Q(A_n^*)$ operators.

Lemma 3.1. [9] Let $T \in L(H)$ and $S \in L(K)$ be non zero operators. Then:

1). $(T \otimes S)^* (T \otimes S) = T^* T \otimes S^* S$,

2). $|T \otimes S|^p = |T|^p \otimes |S|^p$ for any positive real number p.

Theorem 3.2. Let $T \in L(H)$ and $S \in L(K)$ be non zero operators. Then $T \otimes S$ belongs to $Q(A_n^*)$ operator, if and only if, one of the following holds:

1). T and S are $Q(A_n^*)$,

2). $T^2 = 0$ or $S^2 = 0$. **Proof.** We have

$$(T \otimes S)^* \left(|(T \otimes S)^{n+1}|^{\frac{2}{n+1}} - |(T \otimes S)^*|^2 \right) (T \otimes S) = (T \otimes S)^* \left(|T^{n+1}|^{\frac{2}{n+1}} \otimes |S^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \otimes |S^*|^2 \right) (T \otimes S) = T^* \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) \otimes S^* |S^{n+1}|^{\frac{2}{n+1}} S + T^* |T^*|^2 T \otimes S^* \left(|S^{n+1}|^{\frac{2}{n+1}} - |S^*|^2 \right) S$$

Hence, if either (1) T and S are $Q(A_n^*)$ or (2) $T^2 = 0$ or $S^2 = 0$, then $T \otimes S \in Q(A_n^*)$.

Conversely, suppose that $T \otimes S$ is a $Q(A_n^*)$ operator. Then, for $x \in H$, $y \in K$ we gain

$$\left\langle T^{*}\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^{*}|^{2}\right)Tx,x\right\rangle\left\langle S^{*}|S^{n+1}|^{\frac{2}{n+1}}Sy,y\right\rangle+\left\langle T^{*}|T^{*}|^{2}Tx,x\right\rangle\left\langle (S^{*}|S^{n+1}|^{\frac{2}{n+1}}-|S^{*}|^{2})Sy,y\right\rangle\geq0$$

It suffices to show that if the statement (1) does not hold, then the statement (2) holds. Thus, assume to the contrary that neither T^2 nor S^2 is the zero operator, and T is not $Q(A_n^*)$ operator. Then, there exists $x_0 \in H$, such that:

$$\left\langle T^*\left(|T^{n+1}|^{\frac{2}{n+1}}-|T^*|^2\right)Tx_0,x_0\right\rangle = \Gamma < 0 \text{ and } \left\langle T^*|T^*|^2Tx_0,x_0\right\rangle = S > 0.$$

From above relation, we have

$$(\Gamma + S)\left\langle S^* \mid S^{n+1} \mid^{\frac{2}{n+1}} Sy, y \right\rangle \ge S\left\langle S^* \mid S^* \mid^2 Sy, y \right\rangle.$$

Thus, $S \in Q(A^*)$ operator, because r + s < s.

We have,

$$\left\langle S^* \mid S^* \mid^2 Sy, y \right\rangle = \left\langle \mid S^* \mid^2 Sy, Sy \right\rangle = \left\langle S^* Sy, S^* Sy \right\rangle = \left\| S^* Sy \right\|^2$$

and using the Holder McCarthy inequality, we get

$$\left\langle S^* \mid S^{n+1} \mid^{\frac{2}{n+1}} Sy, y \right\rangle = \left\langle \left(S^{*(n+1)} S^{n+1} \right)^{\frac{1}{n+1}} Sy, Sy \right\rangle \le \left\langle S^{*(n+1)} S^{n+1} Sy, Sy \right\rangle^{\frac{1}{n+1}} \parallel Sy \parallel^{\frac{2n}{n+1}} = \parallel S^{n+2} y \parallel^{\frac{2}{n+1}} \parallel Sy \parallel^{\frac{2n}{n+1}}$$

Then,

$$(\Gamma + S) || S^{n+2} y ||^{\frac{2}{n+1}} || S y ||^{\frac{2n}{n+1}} \ge S || S^* S y ||^2.$$

Since $S \in Q(A_n^*)$, from Theorem 2.3. S has decomposition of the form

$$S = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \text{ on } H = \overline{S(H)} \oplus kerS$$

where $A = S|_{\overline{S(H)}}$ is A_n^* operator, we have

$$(\Gamma + S) \parallel A^{n+2} \sim \parallel^{\frac{2}{n+1}} \parallel A \sim \parallel^{\frac{2n}{n+1}} \ge S \parallel A^* A \sim \parallel^2,$$

for all $\sim \in \overline{S(H)}$.

Since $A \in A_n^*$, then A is normaloid, since A is k-*-paranormal operator. Thus, taking supremum on both sides of the above inequality, we have

$$(\Gamma + S) || A ||^4 \ge S || A ||^4.$$

This inequality makes A=0. Hence, $S^2 = \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}^2 = 0$. This is a contradiction to that S^2 is not a zero operator. So T must be a Q(A_n^{*}) operator. A similar argument shows that S is also a Q(A_n^{*}) operator, which completes the proof.

References

[1] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged)33(1972), 169-178.

[2] P. Aiena, Semi-Fredholm operators, perturbations theory and localized SVEP, Merida, Venezuela 2007.

[3] A. Aluthge and D. Wang, The joint approximate point spectrum of an operator, Hokkaido Mathe J., 31(2002), 187-197.

[4] S.C. Arora, J.K. Thukral, On a class of operators, Glas. Math. 21 (1986) 381–386.

[5] C.A.Mc Carthy, Cp, Israel J.Math, 5.(1967) 249-271.

[6] N. Chennappan, S. Karthikeyan, *-Paranormal composition operators, Indian J. Pure Appl. Math., 31(6), (2000), 591-601.

[7] M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations and Operator Theory, vol. 53, no. 4, pp. 497–508, 2005.

[8] S. V. Djordjevic and Y.M.Han, Browder's theorem and spectral continuity, Glasgow Math. J. 42 (2000), no.3, 479-486.

[9] B.P. Duggal and C.S. Kubrusly, A note on k-paranormal operators, Oper. Matrices,4(2010), 213-223.

[10] B. P. Dugall, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954-962.

[11] T. Furuta, On The Class of Paranormal Operators, Proc. Jap. Acad. 43(1967), 594-598.

[12] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math. 1 (1998), no. 3, 389–403.

[13] T.Furuta and J.Haketa, Applications of norm inequalities equivalent to Lowner-Heinz theorem, Nihonkai J. Math. 1 (1990), 11-17.

[14] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249-250.

[15] J. K. Han, H. Y. Lee, and W. Y. Lee, Invertible completions of 2x2 upper triangular operator matrices, Proceedings of the American Mathematical Society, vol. 128, no. 1, pp. 119-123, 2000.

[16] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans.Amer. Math.Soc. 349. No.1 2115-2224.

[17] Shen Li Jun, Zuo Fei and Yang Chang Sen, On Operators Satisfying $T^* |T^2| T \ge T^* |T^*|^2 T$, Acta Mathematica Sinica, English Series, Nov., 2010, Vol. 26, No. 11, pp. 2109-2116.

[18] I. H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{*k} |T^2| T^k \ge T^{*k} |T^*|^2 T^k$, J. Korean Math. Soc., 47(2010), No. 2, 351-361.

[19] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations and Operator Theory 50 (3)(1995), 375–384.

[20] S.Panayappan, N. Jayanthi, D.Sumathi, Weyl's theorem and tensor product for Class A_{k} operators, Pure Mathematical Sciences, Vol. 1 (2012), no.1, 13-23.

[21] S. Panayappan, N. Jayanthi, D. Sumathi, Weyl's theorem and tensor product for quasi Class A_k operators}, Pure Mathematical Sciences, Vol. 1 (2012), no.1, 33-41.

[22] T. Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics, Springer-Verlag, 247(1971).

[23] J. Stochel, Seminormality of operators from their tensor products, Proc. Amer. Math., 124(1996), 435-440.

[24] A. Uchiyama, Weyl's theorem for class A operators, Mathematical Inequalities and Applications, vol.4,

The 1st International Conference on "Research and Education – Challenges Towards the Future" (ICRAE2013), 24-25 May 2013

no. 1, pp. 143–150, 2001.[25] D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser, Switzerland 1983.