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Abstract:

In this article we will define the quasi-class *
nA operator. An operator ( ),T L H is

said to belong to quasi-class *
nA operator if

2
* 1 * 21| | | | 0n nT T T T 
 

  
 

for some positive integer n. We denote the set of * class nA by *( ).nQ A If  T  is *
nA , then

*( ).nT Q A Also, if n=1, then *
1( )Q A operators coincides with *( )Q A operators.

We will show basic structural properties and some spectral properties of this class of
operators. We show that, if *

nT A then ( ) ( )jp pT T  , ( ) {0} ( ) {0},ja aT T ‚ ‚
T  has finite ascent for all , where it follows that T has SVEP. Also, we will prove
here Browder's theorem, a-Browders theorem, and Tensor Products for quasi-class *

nA
operator.
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1. Introduction

Throughout this paper, let H be an infinite dimensional separable complex Hilbert
space with inner product ·,· .  Let ( )L H denote the *C algebra for all bounded operators on

.H We shall denote the set of all complex numbers and the complex conjugate of a complex
number  by and  , respectively. The closure of a set M will be denoted by M and we
shall henceforth shorten T I to T  . For ( ),T L H we denote by kerT the null space

and by ( )T H the range of T. We write ( ) dimker ,T T  *( ) dimker dim ( ) ,T T T


  H
and ( )T for the spectrum of T. We write ( )r T for the spectral radius. It is well known that
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( ) .r T T‖ ‖ The operator T is called normaloid,  if ( ) .r T T‖ ‖ For an operator ( ),T L H

as usual,
1

* 2| | ( )T T T and * * *[ , ]T T T T TT  (the self-commutator of T). An operator

( )T L H is said to be normal, if *[ , ]T T is zero, and T is said te be hyponormal, if *[ , ]T T is

nonnegative (equivalently if *| | | |T T ). An operator ( )T L H is said to be paranormal [11],

if 2 2Tx T x‖ ‖ ‖ ‖ for any unit vector x in .H Further, T is said to be *paranormal [4], if
* 2 2T x T x‖ ‖ ‖ ‖ for any unit vector x in H . T is said to be k-paranormal operator if

1 1k k kTx T x x ‖ ‖ ‖ ‖‖ ‖ and T is said to be k-*-paranormal operator if
* 1 1 .k k kT x T x x ‖ ‖ ‖ ‖‖ ‖ If T is k-*-paranormal, then T is (k+1)-paranormal operator. If T is

k-paranormal operator, then T is normaloid [9].
T. Furuta, M. Ito and T. Yamazaki [12] introduced a very interesting class of bounded

linear Hilbert space operators: class A defined by 2 2| | | | ,T T which is called the absolute
value of T, and they showed that the class A is a subclass of paranormal operators.  B. P.
Dugall, I. H. Jeon, and I. H. Kim [10], introduced * class A operator. An operator

( )T L H is said to be a * class A operator, if 2 * 2| | | | .T T A * class A is a
generalization of a hyponormal operator, [10, Theorem 1.2], and * class A is a subclass of
the class of *paranormal operators, [10, Theorem 1.3]. We denote the set of * class A
by *.A An operator ( )T L H is said to be a quasi *  class A operator, if

* 2 * * 2| | | | ,T T T T T T [17]. We denote the set of quasi *  class A by *( ).Q A T. Furuta
and J. Haketa [13], introduced n-perinormal operator: an operator ( ),T L H is said to be n-

perinormal operator, if * *( ) ,n n nT T T T for each 1n  . An operator ( ),T L H is said to be

*n   perinormal operator [6], if * *( ) ,n n nT T TT for each 1n  . For 1n  , T is hyponormal
operator, while, if T is 2-*-perinormal operator, then T is *-paranormal operator. If T is n-*-
perinormal operator, then T is (n+1)-perinormal operator. In [20], Panayappan et al. define

classes nA operator: an operator ( ),T L H is said to be nA operator if
2

1 21| | | | ,n nT T   for

some positive integer n.
An operator ( ),T L H is said to belongs to *-class nA operator if

2
1 * 21| | | |n nT T  

for some positive integer n.
We denote the set of * class nA by *.nA If n=1, then *

1A coincides with the class *A
operator. If T is (n+1)-*-perinormal operator, then T is class *.nA If *,nT A then T is k-*-

paranormal operator.

2. Spectral Properties of Quasi Class *
nA Operator

Definition 2.1. An operator ( ),T L H is said to belong to quasi-class *
nA operator if

2
* 1 * 21| | | | 0n nT T T T 
 

  
 

for some positive integer n.
We denote the set of * class nA by *( ).nQ A
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If T is *
nA , then *( ).nT Q A Also, if n=1, then *

1( )Q A operators coincides with
*( )Q A operators.

Lemma 2.2. [14, Hansen Inequality] If , ( ),A BL H satisfying 0A  and 1B ‖ ‖ , then
* *( )    for all   (0,1].B AB B A B   

Theorem 2.3. Let ( )T L H be a class *( )nQ A operator for a positive integer n, T not have a

dense range, and T let have the following representation

* on ( ) ker .
0

A B
T T T

C

 
   
 

H H

Then  A is a class *
nA on ( )T H , C= 0 and ( ) ( ) {0}.T A  

Proof. Let P be the projection of H onto ( )T H , where
( )T

A T H∣ and

0
.

0 0

A
TP PTP

 
  

 
Since *( )nT Q A , we have

2
1 * 21| | | | 0.n nP T T P 

 
  

 
We remark,

* * * 2 * 2
* 2 * 0 | | | | 0

| |
0 0 0 0

AA BB A B
P T P PTT P

    
     

   
and by Hansen Inequality, we have

   
2 1 1

1 *( 1) ( 1) *( 1) ( 1)1 1 1| |n n n n nn n nP T P P T T P PT T P        

 
1 2

1 21 1 1 1*( 1) ( 1) 1
| | 0 | | 0( ) ( )

0 00 0

n n n nn n n
A ATP TP
     

           
Then,

2
2 * 2 * 2 * 2

1 1 1 * 21
| | | | 0 | | 0| | 0 | | | | ,

0 0 0 00 0

n n n n
A B AA P T P P T P

   
                   

so A is *
nA operator on ( )T H .

Let 1 *

2

( ) ker .
x

x T T
x

 
    
 

H H Then,

*
2 2, ( ) , ( ) ( ) , ( ) 0,Cx x T I P x I P y I P x T I P y        

thus * 0.T 

By [15, Corollary 7], ( ) ( ) ( )A C T      , where  is the union of the holes in
( )T , which happen to be a subset of ( ) ( )A C  and ( ) ( )A C  has no interior points.

Therefore ( ) ( ) ( ) ( ) {0}.T A C A      
The converse of the above theorem is valid.
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Theorem 2.4. Let T be the operator on *( ) kerT T H H defined as
0 0

A B
T
 
  
 

. If A

belongs to class *
nA operator, then T is quasi-class *.nA

Proof . We have

 
1

* *( 1) 1 *1n n nT T T TT T  
 

 
 

1
* *( 1) 1 *1

0 0 0 0 0 0 0 0 0 0 0 0

n n nA B A B A B A B A B A B
  

 
                                      
 

   

   

1 1
* *( 1) 1 * * *( 1) 1 *1 1

1 1
* *( 1) 1 * * *( 1) 1 *1 1

n n n nn n

n n n nn n

A A A AA A A A A AA B

B A A AA A B A A AA B

    

    

    
     

                   
Let v x y  be a vector in *( ) kerT T H H , where ( )x T H and *kery T .

Then
1

* *( 1) 1 *1( ) ,n n nT T T TT Tv v  
 

 
 

2 2
* 1 * * 1 *1 1| | , | | ,n nn nA A A Ax x A A A By x  
   

      
   

2 2
* 1 * * 1 *1 1| | , | | ,n nn nB A A Ax y B A A By y  
   

      
   

2
1 *1 | | ( ), ( ) 0,n nA A Ax By Ax By 

 
     
 

because A is *
nA operator,

2
1 *1 | | 0.n nA A 

 
  

 
Hence T is quasi-class *

nA operator.

Theorem 2.5. If *( )nT Q A for a positive integer n and M be a closed T-invariant

subspace, then the restriction
|

T
M

is also *( )nT Q A operator.

Proof. Let P be the projection of H onto M . Thus we can represent T as the following

matrix with respect to the decomposition ,M M  .
0

A B
T

D

 
  
 

Put A T M∣ and  we have
0

.
0 0

A
TP PTP

 
  

 
Since *( )nT Q A , we have

2
* 1 * 21| | | | 0.n nPT T T PT 
 

  
 

We remark,
* * 2 * 2 * * 2

* * 2 * * 2 * * | | | | 0 | | 0
| | | |

0 0 0 0

A A A B A A A A
PT T TP PT P T PTP PT PTT PTP

   
      

   
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and by Hansen inequality, we have

   
2 1 1

* 1 * *( 1) ( 1) * *( 1) ( 1)1 1 1| |n n n n nn n nPT T TP PT P T T PTP PT PT T P TP        
1 2 2

* 1 2 *1 1 * 11 10 00 | | 0 0 | | 0 | | 0
0 0 0 00 0 0 0 0 0 0 0 0 0

n n n nn nA AA A A A A A A
    

                                  
Then,

2
2 * * 2

* 1 1 * 1 * * 21
| | 0| | 0 | | | |

0 00 0

n n n n
A A AA A A PT T TP PT T TP

   
             

so A is *( )nQ A operator on .M
A complex number  is said to be in the point spectrum ( )p T of T if there is a

nonzero xH such that ( ) 0.T x  If in addition, *( ) 0T x  , then  is said to be in

the joint point spectrum ( )jp T of T. Clearly ( ) ( )jp pT T  . In general ( ) ( )jp pT T  .

There are many classes of operators which
( ) ( )jp pT T  (1)

for example, if T is either normal or hyponormal operator. In [25] Xia showed that if T is a
semihyponormal operator then holds (1). Dugall et.al extended this result to *-paranormal
operators in [10]. In [17] the authors this result extended to quasi-class *.A Uchiyama, [24]
showed that if T is class A operator then non zero points of ( )jp T and ( )p T are identical.

The same thing is true for many operators' classes as well.
Here, we will tell that the equality (1) holds for class *( )nT Q A operator.

Theorem 2.6. If *( )nT Q A and ( ) 0T x  , then *( ) 0T x  for all ..

Proof . We may assume that 0x  . Let M be a span of { }x . Then M is an invariant

subspace of T and let  on .
0

B
T

C

  
   
 

H M M

Let P be the projection of H onto M , where 0.T  M∣ For the proof, it is

sufficient to show that B=0. Since *( )nT Q A we have
2

1 * 21| | | | 0.n nP T T P 
 

  
 

By Hansen Inequality, we have

   
22 2 * 21 1

*( 1) ( 1) *( 1) ( 1) 1 * 211 1
| | 0 | | | | 0

| | | |
0 0 0 0

n n n n n nn n
B

PT T P P T T P P T P P T P
       
   

       
   

Thus, B=0.
Corollary 2.7. If *( ),nT Q A then ( ) ( ).jp pT T 

Corollary 2.8. If *( ),nT Q A then ( ) ( )T T      for all .

Proof. It is obvious from Theorem 2.6.
Theorem 2.9. If *( )nT Q A and , ( )p T   with   , then ker( ) ker( ).T T   
Proof. Let ker( )x T   and ker( )y T   . Then Tx x and Ty y . Therefore

*, , , , ,x y Tx y x T y x y           
then , 0.x y   Therefore, ker( ) ker( ).T T   
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Theorem 2.10. If *( )nT Q A has the representation T A  on

ker( ) ker( )T T     , where  is an eigenvalue of T, then A belongs to class *( )nQ A ,

with ker( ) {0}A   .

Proof. Since T A  , then
0

0
T

A

 
  
 

and we have

2
* 1 * * 21| | | |n nT T T T T T   

4 4
4

2 2* * 2
* 1 * 1 * * 21 1

0 00

0 | |0 | | 0 | | | |n nn nA A AA A A A A A A A A

 
  

                 
Since *( )nT Q A , then *( )nAQ A .

Let 1

2

ker( )
x

x A
x


 
   
 

, then

1

2

0 0 0 0
( ) ,

0 0

x
T

x A x



      

             
so ker( )x T   , therefore x=0.
Lemma 2.11. [5, Holder-McCarthy inequality] Let T be a psositive operator. Then the
following inequalities hold for all x H
1). 2(1 ), ,    for  0 1,

rr rT x x Tx x x r  ‖ ‖

2) 2(1 ), ,    for  1.
rr rT x x Tx x x r ‖ ‖

A complex number  is said to be in the approximate point spectrum ( )a T of T if

there is a sequence { }nx of unit vectors satisfying ( ) 0.nT x  If in additions
*( ) 0nT x  then  is said to be in the joint approximate point spectrum ( )ja T of

operator T. Clearly ( ) ( )ja aT T  . In general ( ) ( )ja aT T  .

There are many classes of operators for which
( ) ( )ja aT T  (2)

for example, if T is either normal or hyponormal operator. In [25] Xia showed that if T is a
semihyponormal operator then holds (2). Dugall et.al extended this result to *-paranormal
operators in [10]. Cho and Yamazaki in [7] showed that if T is class A operator, then
nonzero points of ( )ja T and ( )a T are identical. In the following, we will show that if

*( ),nT Q A then nonzero points of ( )ja T and ( )a T are identical.

Theorem 2.12. If T is of the class *( )nQ A operator, and ( ) 0mT x  for 0  , then
*( ) 0.mT x 

Proof. Let T be a class *( )nQ A operator and ( ) 0mT x ‖ ‖ . We may assume that

1mx ‖ ‖ . By the assumption ( ) 0mT x  , from

1

( ) ( ) ,   for  ,
k

k k k i i k

i

k
T T T k

i
    



 
       

 
 

we have 2 2( ) 0n n
mT x   .

By
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2 2 2 2| | | | ( )n n n n
m mT x T x      ‖ ‖ ‖ ‖

hence
2 2| |n nT x

m
 ‖ ‖ (3)

Moreover
* * *( ) .T x T T x T Tx

m m m
   ‖ ‖ ‖ ‖ ‖ ‖ (4)

So
Since *( )nT Q A , by Holder-McCarthy inequality, we get

2
* 2 * * 2 * 1 1| | , | | ,n n

m m m m mT Tx T T Tx x T T Tx x  ‖ ‖ =

21 2 2
1 2 2 1 11 1| | ,

nn
n n n nn n

m m mT Tx Tx Tx T x Tx     ‖ ‖ ‖ ‖
So,

1
* 2 1 1

n
n n n

m mT Tx T x Tx  ‖ ‖ ‖ ‖ ‖ ‖

Then it follows from (3), (4) and (5) that
*suplim | | .m

m
T x 


‖ ‖

Since
2* * * * * 2( ) , , , | |m m m m m m mT x T x T x x T x T x x             

* 2 2 * 2 2, , | | ( ) , , ( ) | |m m m m m m m m m mT x Tx x x Tx T x T x x x T x                  ‖ ‖ ‖ ‖
then

* 2 2 2sup ( ) | | | | 0lim m
m

T x  


   ‖ ‖ .

This implies *( ) 0.mT x 

Corollary 2.13. If T is of the class *( )nQ A operator, then ( ) {0} ( ) {0}.ja aT T ‚ ‚
Lemma 2.14.[3] Let | |T U T be the polar decomposition of T, 0  and { }mx a sequence

of vectors. Then the following assertions are equivalent:
1). ( ) 0mT x  and *( ) 0,mT x 

2). (| | | |) 0mT x  and ( ) 0,i
mU e x 

3). *(| | | |) 0mT x  and * )( 0.i
mU e x 

Theorem 2.15. If T is of the class *( )nQ A operator and ( ) {0}a T  ‚ then
*| | (| |) (| |).a aT T   

Proof. If ( ) {0},a T  ‚ then by Theorem 2.12., there exists a sequence of unit vectors

{ }mx such that ( ) 0mT x  and *( ) 0mT x  . Hence, from Lemma 2.14. we have
*| | (| |) (| |).a aT T   

Let ( ( ))Hol T be the space of all analytic functions in an open neighborhood of
( ).T We say that ( )T L H has the single valued extension property at , if for every
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open neighborhood U of  the only analytic function :f U which satisfies equation
( ) ( ) 0,T f   is the constant function f\equiv 0. The operator T is said to have SVEP if T
has SVEP at every . An operator ( )T L H has SVEP at every point of the resolvent

( ) ( ).T T ‚ Every operator T has SVEP at an isolated point of the spectrum.

For ( ),T L H the smallest nonnegative integer p such that 1ker kerp pT T  is called
the ascent of T and is denoted by p(T). If no such integer exists, we set ( ) .p T   We say
that ( )T L H is of finite ascent (finitely ascensive) if ( ) ,p T    for all ..

Corollary 2.16. If T is of the class *( )nQ A operator, then T  has finite ascent for all

.
Proof. We have to tell that 2ker( ) ker( )T T    . To do that, it is sufficient enough to

show that 2ker( ) ker( )T T    , since 2ker( ) ker( )T T    is clear.

Let 2ker( )x T   , then 2( ) 0T x  . From Theorem 2.6. we have
*( ) ( ) 0T T x    . Hence,

2 *( ) ( ) ( ) , 0,T x T T x x        ‖ ‖
so we have ( ) 0T x  , which implies 2ker( ) ker( )T T    .

Corollary 2.17. If T is of the class *( )nQ A operator, then T has SVEP.

Proof. Proof, obvious from [2, Theorem 2.39].
An operator ( )T L H is called an upper semi-Fredholm, if it has a closed range and

( )T   , while T is called a lower semi-Fredholm if ( )T   . However, T is called a
semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be
a Fredholm operator if it is both an upper and a lower semi-Fredholm. If ( )T L H is semi-
Fredholm, then the index is defined by

ind( ) ( ) ( ).T T T  
An operator ( )T L H is said to be upper semi-Weyl operator if it is upper semi-

Fredholm and ind( ) 0,T  while T is said to be lower semi-Weyl operator if it is lower semi-
Fredholm and ind( ) 0.T  An operator is said to be Weyl operator if it is Fredholm of index
zero.

The Weyl spectrum and the essential approximate spectrum are defined by
( ) { :  is not Weyl},w T T    

and
( ) { :  is not upper semi-Weyl}.uw T T    

An operator ( )T L H is said to be upper semi-Browder operator, if it is upper semi-
Fredholm and ( )p T   . An operator ( )T L H is said to be lower semi-Browder operator,
if it is lower semi-Fredholm and ( )q T   . An operator ( )T L H is said to be Browder
operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper
semi-Browder spectrum are defined by

( ) { :  is not Browder},b T T    

and
( ) { :  is not upper semi-Browder}.ub T T    

Theorem 2.18. If T or *T belongs to class *( ),nQ A then ( ( )) ( ( ))w wf T f T  for all

( ( )).f Hol T
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Proof. The inclusion ( ( )) ( ( ))w wf T f T  holds for any operator. Let *( )nT Q A , then T

has SVEP, then from [2, Theorem 4.19] holds ( ( )) ( ( )).w wf T f T  If * *( )nT Q A , similar

to above.
The following concept  has been introduced in 1997 by Harte and W.Y. Lee [16]: A

bounded operator T is said to satisfy Browder's theorem if ( ) ( ).w bT T 

Theorem 2.19. If T or *T belongs to class *( )nQ A , then f(T) satisfy Browder's theorem for

all ( ( )).f Hol T
Proof. Since T or *T has SVEP, then from [2, Theorem 4.22] f(T) satisfies Browder's
theorem for all ( ( )).f Hol T

The following concept  has been introduced in 2000, [8]: A bounded operator T is
said to satisfy a-Browder's theorem if ( ) ( ).uw ubT T 

Theorem 2.20. If T or *T belongs to class *( ),nQ A then a-Browder's theorem holds for f(T)

and *( )f T for all ( ( )).f Hol T
Proof. Since T or *T has SVEP, then from [2,Theorem 4.33] f(T) and *( )f T satisfies
Browder's theorem for all ( ( )).f Hol T

3. Tensor products for quasi *-class nA

Let H and K denote the Hilbert spaces. For given non zero operators ( )T L H and
( ),SL K T S denotes the tensor product on the product space .H K The normaloid

property is invariant under tensor products, [22]. There exist paranormal operators T and S,
such that T S is  not paranormal, [1]. In  [23], Stochel proved T S is normal, if and only
if, T and S are normal. This result was extended to class A operators, *-class A operators,
class nA operators and  quasi class nA operators in [18], [10], [20], and [21] respectively. In

this section, we prove an analogues result for *( )nQ A operators.

Lemma 3.1. [9] Let ( )T L H and ( )SL K be non zero operators. Then:

1). * * *( ) ( ) ,T S T S T T S S   
2). | | | | | |p p pT S T S   for any positive real number p.
Theorem 3.2. Let ( )T L H and ( )SL K be non zero operators. Then T S belongs to

*( )nQ A operator, if and only if, one of the following holds:

1). T and S are *( ),nQ A
2). 2 0T  or 2 0S  .
Proof. We have

2
* 1 * 21( ) | ( ) | | ( ) | ( )n nT S T S T S T S 
 

      
 

2 2
* 1 1 * 2 * 21 1( ) | | | | | | | | ( )n nn nT S T S T S T S  
 

      
 

2 2 2
* 1 * 2 * 1 * * 2 * 1 * 21 1 1| | | | | | | | | | | |n n nn n nT T T S S S T T T S S S S    
   

       
   

Hence, if either (1) T and S are *( )nQ A or (2) 2 0T  or 2 0S  , then *( ).nT S Q A
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Conversely, suppose that T S is a *( )nQ A operator. Then, for ,xH yK we

gain
2 2 2

* 1 * 2 * 1 * * 2 * 1 * 21 1 1| | | | , | | , | | , ( | | | | ) , 0n n nn n nT T T Tx x S S Sy y T T Tx x S S S Sy y    
 

    
 

It suffices to show that if the statement (1) does not hold, then the statement (2) holds.
Thus, assume to the contrary that neither 2T nor 2S is the zero operator, and T is not

*( )nQ A operator. Then, there exists 0 ,x H such that:
2

* 1 * 2 * * 21
0 0 0 0| | | | , 0 and | | , 0.n nT T T Tx x T T Tx x  

 
     

 

From above relation, we have
2

* 1 * * 21( ) | | , | | , .n nS S Sy y S S Sy y    

Thus, *( )SQ A operator, because .   

We have,
* * 2 * 2 * * * 2| | , | | , ,S S Sy y S Sy Sy S Sy S Sy S Sy    ‖ ‖

and using the Holder McCarthy inequality, we get

 
2 2 2 21 1

* 1 *( 1) 1 *( 1) 1 21 1 1 11 1| | , , ,
n n

n n n n n nn n n nn nS S Sy y S S Sy Sy S S Sy Sy Sy S y Sy           ‖ ‖ ‖ ‖ ‖ ‖

Then ,
2 2

2 * 21 1( ) .
n

n n nS y Sy S Sy     ‖ ‖ ‖ ‖ ‖ ‖
Since *( ),nSQ A from Theorem 2.3. S has decomposition of the form

* on ( )
0 0

A B
S S kerS
 
   
 

H H

where
( )S

A S H∣ is *
nA operator, we have

2 2
2 * 21 1( ) ,

n
n n nA A A A        ‖ ‖ ‖ ‖ ‖ ‖

for all ( ).S H
Since *,nAA then A is normaloid, since A is k-*-paranormal operator. Thus, taking

supremum on both sides of the above inequality, we have
4 4( ) .A A   ‖ ‖ ‖ ‖

This inequality makes A=0. Hence,
2

2 0
0.

0 0

B
S
 
  
 

This is a contradiction to that

2S is not a zero operator. So T must be a *( )nQ A operator. A similar argument shows that S

is also a *( )nQ A operator, which completes the proof.
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