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Abstract

Time series with long range dependence or long memory appear in many contexts, for
example in hydrology, financial economics, astrology, psychology, cardiology, etc. The
Autoregressive Fractionally Integrated Moving Average, ARFIMA(p,d,q), model has widely
been used to represent a time series with long memory. The intensity of the memory can be
measured by the fractional difference parameter, d. Since the classical methods cease to be
valid in presence of long range dependence, the detection of long memory has important
implications. Some classical tests on the long memory exhibit size distortions in small
samples. It is well known that the bootstrap techniques are a good remedy in these situations.
A bootstrap method, widely used for dependent data, is the block bootstrap method. In this
paper we consider a bootstrap technique, which uses blocks compound by cycles, to perform
hypothesis testing on the fractional difference parameter in the ARFIMA model. The
approach is applied to two semi-parametric estimators of fractional difference parameter, well
known in the literature, derived by the log-periodogram and the smoothed log-periodogram
regression methods. The R software is used to conduct a simulation study. Both short
memory and long memory processes are generated in order to investigate the behaviour of the
proposed bootstrap tests. By means of Monte Carlo experiments the performance of the tests
is obtained calculating the empirical significance level and empirical power of the tests.
Different block sizes are considered.

Keywords: Long range dependence, ARFIMA model, fractional difference parameter, block
bootstrap, hypothesis test.
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1. INTRODUCTION

Long memory or long range dependence is an important aspect of many types of data that has
gained much attention during the last decades. Long memory is a characteristic of a
stationary process in which the underlying time series realizations display significant
temporal dependence at very distant observations. The autocorrelation function of a process
with long memory takes far longer to decay than that of the common processes modeled by
the vast class of ARMA (Auto Regression Moving Average) models usually called as short
memory processes. The presence of long memory firstly evidenced in hydrology is now
evidenced in many fields, such as economics, finance, network traffic, psychology etc. It is
important to distinguish long memory processes from short memory ones. The classical
methods applied in short memory processes are not still valid in the presence of long
memory. Also, the prediction and the effects of shocks in a time series data are very different
for long and short memory processes (for theory and methods of long memory see Palma
(2007)). As an example, note that the decay of the variance of the sample mean depends on
the memory of the process having different rates of convergence for short or long memory.
This distinction between rates of convergence is certainly relevant when computing tests and
confidence intervals for the mean of the process. If the distinction is ignored standard
statistical methods may yield unrealistic results.
There are several tests in literature in order to test the presence of the long memory (Beran
1994, chapter 4-6). The classical tests are based on the asymptotic distribution of an estimator
of a parameter, which by definition provides a measure of the long memory in the data. It is
well known that these tests suffer from finite sample distortion.
In this paper we present a bootstrap technique of hypothesis testing in order to test for long
memory. A simulation Monte Carlo study is conducted to empirically estimate the
performance of these bootstrap tests.
The outline of the paper is as follows. In Section 2 we specify some definitions of long
memory and ARFIMA process. Then we describe two semi-parametric tests for long
memory. In section 3 we consider a review of the bootstrap resampling techniques for time
series and their application on hypothesis testing. Section 4 shows some simulation results.

2. LONG MEMORY AND ARFIMA MODELLING

2.1. Long memory

In contrast to the short memory of weakly dependet processes such as all Gaussian finite-
order ARMA models (see Box & Jenkins, 1976, chapter 4), natyral phenomena often display
long-term memory in the form of non-periodic cycles in the sense that they exhibit
dependence even over very long time spans.
Long memory and long-range dependence are synonymous notions. Even though the long
memory notion recently has become important, there are various definitions of it. When
definitions are given, they vary from author to author. Most of the definitions of long range
dependence appearing in literature are based on the second order properties of a stochastic
process. Such properties include asymptotic behaviour of covariance, spectral density and
variances of partial sums. In fact, long range dependent processes are characterized by slowly
decaying autocorrelations or by a spectral density function exhibiting a pole at the origin. Let

, 1,2,...tX t  be a stationary process with finite variance. We can write ( )tE X  and
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( , ) ( )t t kCov X X k  for any moment t. Here ( )k for k denotes the autocovariance

function of the process. The autocorrelation function is then defined by equation

(1)
( )

( )
(0)

k
k







Also for a stationary process we can define its spectral density function by equation
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In general long memory is defined by the fact that the autocorrelations of the process are

absolutely non-summable, i.e. ( ) lim ( )
n

n
k k n

k k 
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    . However, there are alternative

definitions. According to Beran (1994) let give two of more common definitions of long
memory (Beran, 1994, p. 42).
Definition in time domain:
Suppose that there exists a real number  0,1  and a constant 0c  not depended on k

such that

(3)
( )
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k

k

c k 






Then tX is called a stationary process with long memory or long-range dependence or strong

dependence, or a stationary process with slowly decaying or long-range correlations.
Definition in spectral domain:
Suppose that there exists a real number  0,1  and a constant 0fc  not depended on 
such that

(4)
0

( )
lim 1

f

f

c




 
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Then tX is called a stationary process with long memory or long-range dependence or strong

dependence.

2.2. The ARFIMA(p,d,q) model

The ARFIMA(p,d,q) model proposed by Granger and Joyeux (1980) and Hosking (1981) is a
generalization of an ARIMA (p,d,q) model obtained by permitting the differential parameter,
d to take any real value instead being restricted to integer values. It is defined as

(5)      1 ( )
d

t tB B X B     

where B is the back-shift operator and  t is a white noise process with zero mean and

finite variance 2
 . All the roots of the polynomials  B and  B lie outside the unit

circle, while 0.5 0.5d   is the fractional differencing parameter. The process  t t
X


is

both stationary and invertible. For 0 0.5d  the process exhibits long memory in the sense
of equation (3) if we set 1 2d   . If 0.5 0d   we say that the process has intermediate
memory and when 0d  we have the ARMA (p,q) process (short memory). In the simple
case when 0p q  equation (5) defines a ARFIMA(0,d,0) process also called a FI(d)
(Fractionally Integrated) process with parameter d. The spectral density function of the FI(d)
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process is  
22
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. In this case equation (4) holds if we set

2
fc  and 2d  .

As we see the intensity of the memory can be measured by the difference parameter, d. Since
several estimators with known asymptotic distribution are available in the literature we are
able to perform a hypothesis testing for the null hypothesis 0 : 0H d  . Supposing that the

time series data at the hand may be sufficiently approximated by an ARFIMA model the null
hypothesis would be that the data series has no long memory.

2.3. Regression estimators of the fractional parameter

There have been proposed several estimators for the fractional parameter in the literature. In
our simulation study, we use two semi-parametric estimators based on the regression
equation constructed from the logarithm of the spectral density function.
One of the most used estimators is proposed by Geweke and Porter-Hudak (1983) and is
usually noted as GPH estimator. This estimator is based on the log-periodogram regression
and is obtained applying the least square method to the linear regression
(6) ,  1, 2,...,j j ju a bv e j g   

in which  ln ( )j ju I  ,  ln (0)ARMAa f , b d  , 2ln 4sin 2
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are the random errors. Here  ARMAf  denotes the spectral density function

of the corresponding ARMA(p,q) process of (5),
1
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Fourier frequencies. Then d can be estimated by
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  . An important practical problem in the implementation of the GPH

estimator is the choice of the truncation parameter ( )g g n , which has an important
influence on the bias and variance of the estimator. Hurvich, Deo and Brodsky (1998)

showed that  4
5( )g n O n is an optimal value which can minimize the MSE (Mean Squared

Error) of ˆ
GPHd . Reisen (1994) suggested using a smoothed periodogram instead of the sample

periodogram. The smoothed periodogram is defined as

(8) 0
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where  k is a set of weights called lag window. Reisen (1984) used the Parzen window for

the lag window  k .Then, the smoothed periodogram (hereinafter denoted as SP) estimator

of d is

(9)
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where  ln ( )j SP ju I   while jv are as before. For this estimator we have to choose two

tuning parameters, the truncation parameter of the regress ( )g g n and the truncation
parameter of the lag window, ( )m m n in the smoothed periodogram.

Both ˆ
GPHd and ˆ

SPd are asymptotically unbiased and normally distributed but they suffer from

finite-sample bias.

3. BOOTSTRAP HYPOTHESIS TESTING.

The bootstrap methodology, proposed originally by Efron (1979) is a computer-intensive
technique that presents solutions when the parametric methods and statistical theory do not
work. The idea behind the bootstrap is treating the original data of a sample as to be the
population of interest and resampling with replacement new data from the original data.
When the data at the hand are not independent and identically distributed (i.i.d.), such as a
time series, the resample technique must be carried out in such a way that the dependence
structure of the original time series to be preserved in the bootstrap time series. In the last
years many bootstrap methods for time series have been developed. The most common are
the block bootstrap methods. They consider a set of consecutive observations to define
blocks. Then the bootstrap time series is constructed by resampling (with replacement) blocks
and concatenating them still yielding a time series usually with equal length to original series.
It is pretended that the data within each block have the same dependence structure as they
have had in the original time series and the data in different blocks are asymptotically
independent. Different methods differ in the way as blocks are constructed. For a theoretical
comparison of some methods see Lahiri (1999).
In this paper we consider blocks that are composed by one or more consecutive cycles. A
cycle is defined as a pair of alternating positive and negative terms that are made when the
time series crosses its mean (supposed to be zero). This bootstrap method is proposed by Park
and Willemain (1999) to estimate the sample mean of a stationary time series with short
memory. This method resamples a set of random-length cycles. The number of cycles is also
random. We consider both the non-overlapping block and the moving block bootstrap. In the
moving block case a cycle is considered as a single observation. The number of cycles that
should be included in a block is a tuning parameter that should be determined appropriately
since it is close related with the block length.
In briefly, the implementation of the bootstrap for hypothesis testing can be summarized as
follows (for details see MacKinnon (2007)). Suppose that ̂ is the observed value of a test
statistic  with cumulative distribution function F under the null hypothesis. Let we wish to

perform a test at level  that rejects the null hypothesis when ̂ is in the upper tail. Than the
p-value of ̂ is ˆ ˆ( ) 1 ( )p F   . If we knew F , we would simply calculate ˆ( )p  and reject
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the null whenever ˆ( )p   . But in practice F is unknown or the asymptotic approximation

of it may perform poorly for finite sample sizes. An increasingly popular alternative is to
perform a bootstrap test. In the spirit of the bootstrap we first generate B bootstrap samples
and compute the bootstrap test statistic b  for each one, most commonly by the same

procedure used to calculate ̂ from the real sample. Then, if we wish to reject when ̂ is in
the upper tail, the bootstrap p-value is

(10)
1

1ˆ ˆ ˆ( ) ( )
B

b
b
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B
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

 
where I(•) denotes the indicator function. When we wish to perform a two-tailed test, and we
are willing to assume that  is symmetrically distributed around zero, we can use the
symmetric bootstrap p-value
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If we are not willing to make this assumption, we can use the equal-tail bootstrap p-value
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If the mean of b  is far from zero, ˆ sp and ˆ etp may be very different, and tests based on them

may have very different properties under both null and alternative hypothesis (MacKinnon,
2007, p. 4).
In our Monte Carlo study we use an iterative bootstrap procedure, called pretesting bootstrap,
proposed in Davidson and MacKinnon (2000). The idea is to start with a relatively small
value of B and then increase it, if necessary, until we are confident, at some prechosen
significance level, that ˆ ˆ( )p  is either greater or less than  . If the procedure stops with a

small value of B, ˆ ˆ( )p  may differ substantially from ˆ( )p  , the asymptotic bootstrap p-value

with infinite replications, but only when ˆ( )p  is not close to  . Thus we ensure low
probability that the feasible and ideal bootstrap tests yield different outcomes (Davidson and
MacKinnon, 2000, chapter 3).

4. MONTE CARLO RESULTS

4.1 The experiment design

To test 0 0:H d d against 1 0:H d d we use the test statistic 0
ˆ

ˆ ˆ( )

d d

sd d



 , where d̂ is the

GPH or SP estimator and ˆ( )sd d is the corresponding estimator of the standard deviation. In

our case we set 0 0d  . Since ̂ is asymptotically pivotal it is an appropriate statistic to be

used in a bootstrap hypothesis testing procedure.
In a Monte Carlo experiment we considered a wide class of models from the ARFIMA(p,d,q)
processes. In order to obtain empirically size and power estimates of the test we considered
ARFIMA(1,d,0) models with auto regression coefficient 0.1,0.5  , ARFIMA(0,d,1) with
moving average coefficient 0.1,0.5  and ARFIMA(0,d,0). In all models we considered the

values  0.45,0.45d   in increments of 1.5. This set of values includes both the short

memory (for 0d  ) and the long memory (for 0d  ) cases. Using the ‘fracdiff” package in
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R we generated 1000 replicated time series of each model under consideration with sample
size 100,300n  and 200 first terms removed in order to reduce the effect of initial values.
The white noise process was generated from the standard normal distribution. Then in each
simulated case we calculated the empirical size or power of the test. We used 0.8( )g n Cn

terms in periodogram regression of ˆ
GPHd estimator with 0.3,0.45,1C  . In ˆ

SPd estimator

case we used 0.5( )g n n regression terms and the value 0.9m n as the truncation parameter

of Parzen lag window. We set the block length approximately at order 0.5( )O n using different
numbers of cycles per block. For each combination of the parameters we applied both the
moving and non-overlapping block bootstrap methods. We used min 99B  , max 2999B  and

0.007  in the pretesting bootstrap procedure (Davidson and MacKinnon, 2000, p.10). The
nominal size (type I error) of the test was chosen to be 0.10,0.05,0.01  . We used both the
symmetric and equal-tail bootstrap p-values defined by equations (11) and (12).

4.2 Results

Firstly we note that bootstrapping with non-overlapping or overlapping (moving) blocks
yielded similar results. Also, the number of cycles per block needs not to be large for our
method to perform better. But, depending on the choice of other parameters the results were
highly various. There occurred underestimations or overestimations of the test size in most of
the cases under considerations.
The use of GPH estimator with ˆ etp as a bootstrap p-value yielded always overestimations of

the test size, while underestimates of the size occurred when the GPH estimator and
ˆ sp bootstrap p-value were used. These underestimations were large for C=0.3 and moderate

for C=0.45 with an expectation in the case of AR(1) model with coefficient 0.5.
Tests based on the SP estimator underestimated the nominal size for all combinations of
parameters and for both ˆ sp and ˆ etp bootstrap p-values.

The use of regression standard error deviation of ˆ
GPHd or ˆ

SPd instead of the corresponding

asymptotic standard deviation yielded size estimations closer to the nominal sizes. Table 1
reports the empirical size estimations implementing the bootstrap procedure presented above
using the test statistic based on SP estimator and regression estimator of its standard

deviation. Results in table 1 show that the bootstrap test based on ˆ
SPd estimator standardized

by the regression standard deviation has good sizes even for ARFIMA(1,0,0) model with
coefficient 0.5  .
In table 2 we report the power estimations against the fractional integrated models for the
same set of parameters as those reported in table 1. We can see that the bootstrap test has not
high power against the fractionally integrated alternatives. It is true in most cases of bootstrap
tests using the symmetric bootstrap p-value.
The asymptotic tests generally have biased sizes in the presence of ARMA part as we can see
from results of one of the better results cases reported in table 3. But they are often more
powerful than the bootstrap tests.

4.3 Conclusions

From the whole Monte Carlo experiment we may conclude that testing the null hypothesis of
no memory by mean of the bootstrap procedure presented in this paper must be carefully
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conducted. Due to a large number of the tuning parameters there can occur misleading results
under both the null and alternative hypothesis. In general the bootstrap tests based on both
GPH and SP estimators are conservative tests in the sense that they tend to reject the null less
frequently than the nominal or to not reject the null of no long memory under the alternative.
However, it should be noted that 100n  and 300n  may not be large enough for gaining
of power or for some of the methods to perform better in the presence of long memory.

We tentatively suggest using of
ˆ ˆ

ˆ ˆ( )
SP SP

SP

reg SP

d d

sd d








 , where ˆ

SPd  is the bootstrap analogue of (9)

and  ˆ
reg SPsd d  is the regression estimator of its standard deviation.

Recently many authors suggest the use of a portfolio of tests instead of only one test for
detecting the presence of long memory.

Tab. 1 Rejection percentage for short memory data for H0:d=0 vs. H1:d≠0.

Nominal size
ARFIMA

(0,0,0)
ARFIMA(1,0,0) ARFIMA(0,0,1)

0.1  0.5  0.1  0.5 
10%
5%
1%

6.0
2.3
0.7

6.7
2.9
0.6

8.2
3.3
0.8

5.7
2.9
0.34

8.5
3.7
0.8

Notes: The test statistic is based on SP estimator with regression standard deviation.
The bootstrap symmetric p-value is used; n=100; the number of cycles of a block: 2

Tab. 2 Rejection percentage for long memory data for H0:d=0 vs. H1:d≠0.
Nominal
size

d
ARFIMA
(0,d,0)

ARFIMA(1,d,0) ARFIMA(0,d,1)
0.1  0.5  0.1  0.5 

10%

-0.45
-0.30
-0.15
0.15
0.30
0.45

23.5
20.4
12.2
7.2
15.5
38

25.4
16.5
12.7
6.7
18.2
40.8

23
15.6
9.1
18.9
43.4
65.5

21
17.3
11.6
4.1
13.6
35.2

22.5
20.1
15.9
4.1
4.2
10.8

5%

-0.45
-0.30
-0.15
0.15
0.30
0.45

12.3
8

6.6
2

6.8
24.7

13.3
9.2
4.3
3

9.1
25.9

11.3
8.7
4.2
10.4
26.1
50.9

11.8
9.4
6.4
2.3
7.9
19.1

10.2
8.9
5.6
1.3
1.1
4.7
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1%

-0.45
-0.30
-0.15
0.15
0.30
0.45

2.2
1.8
1.3
0.4
2.1
5.3

3.4
1.9
1.3
0.4
1.4
7.5

1.8
1.9
1.1
1.5
7.6
20.9

2.4
1.7
0.9
0.2
1.1
4.2

2.5
1.5
1.7
0.3
0.0
1.4

Notes: The test statistic is based on SP estimator with regression standard deviation.
The bootstrap symmetric p-value is used; n=100; the number of cycles of a block: 2

Tab. 3 Rejection percentage for short memory data for H0:d=0 vs. H1:d≠0.

Nominal size
ARFIMA

(0,0,0)
ARFIMA(1,0,0) ARFIMA(0,0,1)

0.1  0.5  0.1  0.5 
10%
5%
1%

8.7
4.8
5.1

8.9
6.4
1.8

29.6
15.8
7.2

9.3
5.4
1.7

23.9
19.3
6.6

Notes: The test statistic is based on GPH estimator with asymptotic standard deviation.
The bootstrap symmetric p-value is used; n=100; C=0.45
The number of cycles of a block: 2
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