ADVANTAGES OF BEER PRODUCED FROM BASIC EXTRACT WITH HIGH GRAVITY AS COMPARED TO BEER PRODUCED WITH NORMAL GRAVITY

Mybeshir Pajaziti¹, Renata Kongoli²

¹J.S.C. "Birra Peja", St. Nexhdet Basha #160, Peja 30000, Kosovo, and Faculty of Biotechnology and Food, Agricultural University of Tirana, Kodër Kamëz, Tirana, Albania <u>mpajaziti57@hotmail.com</u>

² Agricultural University, Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Kodër Kamëz, Tirana, Albania <u>rkongoli@ubt.edu.al</u>

Abstract

This study was done to attain a higher quality beer by optimizing the production process at a lower cost at the J.S.C. "Birra Peja" brewery, Peja, Kosovo. The aim of this study was to increase the extract concentration without reducing the beer quality, which in turn would make the brewery lose its market competitive edge. The beer quality and the organoleptic characteristics were studied and monitored in order to compare the beers produced of four different concentration basic extracts: E = 10.5 °P; E = 13 °P; E = 15 °P; and, E = 16 °P. The study was reviewed by the technical laboratories at "Birra Peja" and "Union Brewery", Ljubljana, Slovenia. Quality tasting was made from two tasting groups, each from the abovementioned breweries. Chemical and microbiological tests were based on methods under the "EBC (European Beer Convention)" and the "MEBAK (Mitteleuropäische Brautechnische Analysenkommision e.V.)" guidelines.

Based on the conducted analyses, it was concluded that beer produced of 16 °P basic extract is of higher quality and this is the beer that will be produced at "Birra Peja" brewery.

Key words: basic extract, high gravity beer, European Beer Convention (EBC), MEBAK

1. INTRODUCTION

The most promising method to improve the yeast fermentation process in the high gravity beer is to increase the rate of pitching the fermenting yeast. Fermentations with four (4) different rates of yeast pitching $(1.5 \times 107, 2.0 \times 107, 3.0 \times 107 \text{ and } 4.0 \times 107 \text{ stable cells / sweet solution ml})$ are done to investigate the impact of the changing quantity of yeast added in order to achieve the goal set for successful fermentation and successful production of beer with 10.5 °P, 13.0 °P, 15.0 °P, and 16.0 °P. The obtained results show that the highest rate of pitching result in a higher number of maximum yeast cells in the future as well as the highest sugar quantity, ethanol production rates, the level of diacetyl in green beer, and the quantities of high alcohols and esters. Results also show that the method itself is even more effective than a method of adding a sweet solution food supplement, or a combination of these two methods in relation to the amount of sugar, ethanol production rates, ethanol, concentrations of diacetyl, high alcohols and esters in green beer (Nguyen & Viet Man, 2009).

High gravity beers may be described as a procedure that involves wort of higher concentration than the normal. For many years we have worked with wort of 10.5 °P, which was fermented and the beer produced was of 4.2% (v / v) ethanol alcohol. In high gravity beer, the wort gravity can reach up to 16 °P, but due to technical conditions we have produced up to 16 °P, resulting in high concentration of ethanol in green beer. After fermentation, the product has been diluted, usually with water of released oxygen, in order to have a beer with regular ethanol content (4.2%) or the desired alcohol content. The dilution process has been often performed at the later stages of processing, usually after the filtration process or right before packaging. This process is conducted with de-aired water that consists of 0.002% oxygen.

The production of high gravity beer has been highly improved in recent year because of a large number of its benefits:

- Increased production capacity as a result of a higher utility rate of the existing brewing/wort production facilities
- Reduced operational costs due to lowered energy use, shortened production period, less cleaning needed
- Improved organoleptic properties due to increased physical stability, improved taste and beer aroma
- Lower yeast rising as a result of higher alcohol concentration per unit of fermented extract
- > Higher yeast rates at the pre-fermentation period

For example, using 15 °P wort leads to lowering the power consumption by as much as 14% and increasing the productivity of the workforce (25-30%) research by Narziss (1985).

All of these priorities have been calculated on the basis of preliminary annual results. However, this technology still has some problems: decreased stability of beer foam, changed taste which may be perceived negatively by the clients, and a negative effect on the performance of yeast due to high osmotic pressure and ethanol concentration, leading to a lower rate and longer fermentation (Kunze, 2004).

In addition, high levels of yeast pitching has been considered recently as a possible method of attaining high gravity beer due to its typical advantages, such as shortening the fermentation time, increasing the rate of fermentation, and increasing the dilution rate. The beer traditionally produced at the "Birra Peja" brewery has a pitching rate of wort of 5-20 million cells/ml. However, in the high gravity beer, to increase fermentation, this rate should be increased about two fold higher than normal. It is clear that although these results indicate that these high rates of wort pitching are favourable for high gravity beer, they do not significantly impact the normal (10.5 °P) extract beer. Nonetheless, the aim of this study was not to highlight the effects of the rate of pitching of wort, but of the production of the 16 °P high gravity beer.

2. MATERIALS & METHODS

Wort of 16 °P is prepared by brewery performed done with 100% malt in the decoctions processing. For this work, we used water from the "Drini i Bardhë" spring, Peja, Kosovo with 9.5 degrees of General Hardness (9.5 °dGH); hops or Humulus lupulus originating from Slovenia, which was made of 70% Aurora (bitter) and 30% Golding (aromatic). In the first case of beer produced with 10.5 °P, we had 6.3 gr. -acids/hl and, in the other three (3) cases, even though the grammage of -acids/hl was increased in proportion to the increased extract the proportion of hops remained the same. Yeast which was used for producing these beers is Saccharomyces Carlsbergensis of above-mentioned concentration. Procedures and parameters during the phases of the wort processing were kept constant for obtaining the wort in all four (4) cases. The content of the initial dissolved oxygen was 10 ppm. The main fermentation is conducted and completed at 14 °C, where 80-85% of the extract was consumed (Table 1. Analysis of beer & Figure 1. The histogram of beer analysis).

Table 1. A	Analysis	of beer
------------	----------	---------

	Basic	Real	Apparent	Real rate of	Appar. rate								
Date of	extract	extract	extract	fermentation	of ferment.	Alcohol	Density	CO_2		Color	Bitter	O ₂ total	Polyphenols
work	%	%	%	%	%	%v/v	20/20	g/l	pН	EBC	EBC	mg/l	mg/l
25.05.2012	10.30	3.33	1.67	68.8	83.74	4.53	1.0065	5.2	4.53	7.60	21	0.15	176
22.07.2013	10.50	3.68	2.05	66.2	80.44	4.46	1.008	5.1	4.71	8.00	21	0.14	148
08.01.2013	10.56	3.26	1.52	70.33	85.62	4.76	1.0059	5.3	4.61	7.80	23	0.38	113
11.01.2013	10.62	3.23	1.47	70.78	86.16	4.82	1.0053	5.1	4.92	7.80	21	0.26	163
min/max	10-11				78-84	3.7-4.7		4.7-5.7	4.2-4.6	7.5-10	20-26	0-0.5	145-175

Figure 1. The histogram of beer analysis

During fermentation the work of yeast, temperature, the amount of carbon dioxide, the amount of ethanol, and gravity were continuously monitored.

The affect of yeast pitching over the fermentation process was followed in order to realize this study successfully. So, in this study, advantages of no dependencies from raw or from the technological process of beer are primary.

3. RESULTS & DISCUSSION

Changes in the organoleptic properties of the high gravity beer $(16.0 \text{ }^{\circ}\text{P})$ and in the cost of the final product are observed from the maturation, beer filtration and storage. The cost for filtering the beer has fallen in proportion to the previous index. One should mention the energy savings of about 15% during the preparation of wort; the energy saving during the main fermentation and maturation of about 13%; 43% increase of the utilization of the brewery operational capacity as compared to the wort produced from the 10.5 °P.

Additionally, due to changes in the production recipes we have reduced by 90% the substances that are used for stabilization (proteins and polyphenols).

As we see in tables and histograms, we have changes in the amount of secondary fermentation products such as increased amount of esters and reduced amount of higher alcohols, which then leads to changes in taste of beer (Table 2. Analysis of the secondary products of fermentation & Figure 2. The histogram of the secondary products of fermentation).

Table 2. Analysis of the secondary products of fermentation

						Iso-Amyl			Iso-Amyl Alcohol
	Diacetyl	Pentanedione	DMS (mg/l)	Acetaldehyde	Etyl Acetate	Acetat (mg/l)	Propanol	Iso-Butanol	(mg/) 50-60
Peja Beer	(mg/l) 0.1	(mg/l) 0.6	0.03-0.12	(mg/l) 2-20	(mg/l) 5-30	1-5	(mg/l) 5-30	(mg/l) 5-20	
$25.05.12(\text{Ex} = 10.50^{\circ}\text{P})$	0.025	0.10	0.056	14	12	0,97	12	18	60
$22.07.12(Ex = 13.00^{\circ}P)$	0.031	0.21	0.055	9	14	1.21	11	15	58
08.01.13(Ex = 15.00°P)	0.012	0.14	0.037	5	17	1.00	11	12	43
$11.01.13(\text{Ex} = 16.00^{\circ}\text{P})$	0.012	0.10	0.025	5	17	1.15	12	14	35

Figure 2. The histogram of the secondary products of fermentation.

So the beer produced by this method has the consistency of taste over time because it does not come to the oxidation of polyphenols. Table 3 (Results of beer tasting) shows the separate scoring, aggregated for the purpose of this paper, of the two (2) expert tasting groups, one from "Birra Peja" brewery and from "Union Brewery", Ljubljana. Beer produced of the 16% initial extract was graded higher.

	Date: 15.02.2013 Maximum points										
Organoleptic characteristics	10.50 °P	10.50 °P 13.00 °P 15.00 °P 16.00 °P									
Taste	2.00	2.35	2.50	2.70	3						
Smell	1.20	2									
Color	4.20	5									
Clarity	3.42	3.80	3.80	3.80	4						
Foam	5.00	4.80	4.80	4.80	6						
Full points	15.82	16.50	17.65	18.40	20						
Evaluation	Very good	Very good	Excellent	Excellent							

Table 3. Results of beer tasting

4. CONCLUSION

This study was done in the period November 2012 - February 2013 and after comparing the results we have concluded that the beer produced with the initial extract 16 °P meets all of the technological and economic conditions for production at J.S.C. "Birra Peja" brewery. The beer is of high quality, it is drinkable and has a satisfactory colloidal stability. These beers were tasted by two groups one from the "Union Brewery" and the other one from "Birra Peja". Both groups graded higher the beer produced with 16 °P initial extract. The entire technological process was monitored with microbiological analyses.

In consultation with the higher management of the plant we have come to the conclusion that the production with this recipe should start right away. However, the J.S.C. "Birra Peja" brewery, Peja, Kosovo due to some insufficient capacity of the unit is still producing beer of 15 °P and not of 16 °P extract. The main reason behind this is the lack of sufficient amount of carbon dioxide leading to insufficient foam; however, an investment will be made in the near future and the adequate technology will be attained.

REFERENCES:

- 1. Kunze, Wolfgang. Technology Brewing and Malting, VLB Berlin, Germany, 2004.
- 2. Anger, Heinz-Michael, Brautechnische Analysenmethoden (MEBAK).

Weihenstephan, Freising, Deutschland, 2006.

- 3. Nguyen, T. H. and Viet Man, L. V. Using high pitching rate for improvement of yeast fermentation performance in high gravity brewing, 2009.
- 4. Schuster, Karl, Die Technologie der Würzebereitung, Stuttgart, Deutschland, 1985.