
The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

SEMANTIC FILE SYSTEMS

Edra Fresku1

Arinela Anamali2

1IT Department, Regional Hospital of Shkodra, Albania, e-mail: freskuedra@hotmail.com
2IT Department, AgnaGroup, Tirana, Albania, e-mail: arinela_anamali@yahoo.com

Abstract1
In this paper we will present the study on the integration on a semantic approach in a peer-

to-peer file system implementation. Since a few years, various studies have been conducted by
scientists to propose either semantic or peer-to-peer file systems approaches in separate ways.
Indeed, semantic file systems deal with the ability for a system to provide flexible associative
access to its contents by extracting attributes from files whereas peer-to-peer approaches aim at
using the aggregate storage capacity of numerous computers gathered in a decentralized peer-to-
peer network. A semantic file system is an information storage system that provides flexible
associative access to the system’s contents by automatically extracting attributes from files with
file type specific transducers. We have tried to understand Pastis, a Java peer-to-peer file system
implementation based on an open source implementation of Pastry/PAST and study the
integration of a semantic concept into it for further extensions. Bringing together a semantic and
a peer-to-peer file system is a relevant topic. The resulting system will provide rapid attribute-
based access to the system's contents and take advantage of the interesting storage capacity
provided by an arbitrary large number of computers connected to the Internet. The deep study of
Pastis allowed us to identify locations where intervention could be made in order to integrate
semantics. It will be a relevant step to join these two concepts in order to build a completely
decentralized system that offers users the possibility to search contents in an easier and faster
way.

Keywords: semantic file systems, P2P systems

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

1. INTRODUCTION

A semantic file system is an information storage system that provides flexible associative
access to the system’s contents by automatically extracting attributes from files with file type
specific transducers. Associative access is provided by a conservative extension to existing tree-
structured file system protocols, and by protocols that are designed specifically for content based
access. Automatic indexing is performed when files or directories are created or updated.

The automatic indexing of files and directories is called “semantic” because user
programmable transducers use information about the semantics of updated file system objects to
extract the properties for indexing. Through the use of specialized transducers, a semantic file
system “understands” the documents, programs, object code, mail, images, name service
databases, bibliographies, and other files contained by the system. For example, the transducer
for a C program could extract the names of the procedures that the program exports or imports,
procedure types, and the files included by the program. A semantic file system can be extended
easily by users through the addition of specialized transducers. Associative access is designed to
make it easier for users to share information by helping them discover and locate programs,
documents, and other relevant objects. For example, files can be located based upon transducer
generated attributes such as author, exported or imported procedures, words contained, type, and
title. A semantic file system provides both a user interface and an application programming
interface to its associative access facilities. User interfaces based upon browsers [Inf90, Ver90]
have proven to be effective for query based access to information, and we expect browsers to be
offered by most semantic file system implementations. Application programming interfaces that
permit remote access include specialized protocols for information retrieval, and remote
procedure call based interfaces. It is also possible to export the facilities of a semantic file system
without introducing any new interfaces. This can be accomplished by extending the naming
semantics of files and directories to support associative access. A benefit of this approach is that
all existing applications, including user interfaces, immediately inherit the benefits of associative
access.

Semantic file systems can provide associative access to a group of file servers in a
distributed system. This distributed search capability provides a simplified mechanism for
locating information in large nationwide file systems.

Semantic file systems should be of use to both individuals and groups. Individuals can use
the query facility of a semantic file system to locate files and to provide alternative views of data.
Groups of users should find semantic file systems an effective way to learn about shared files
and to keep themselves up to date about the status of group projects. As workgroups increasingly
use file servers as shared library resources we expect that semantic file system technology will
become even more useful. Because semantic file systems are compatible with existing tree
structured file systems, implementations of semantic file systems can be fully compatible with
existing network file system protocols such as NFS [SGK+85, Sun88] and AFS [Kaz88]. NFS
compatibility permits existing client machines to use the indexing and associative access features
of a semantic file system without modification. Files stored in a semantic file system via NFS

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

will be automatically indexed, and query result sets will appear as virtual directories in the NFS
name space. This approach directly addresses the “dusty data” problem of existing UNIX file
systems by allowing existing UNIX file servers to be converted transparently to semantic file
systems.

Peer-to-peer (P2P) systems are distributed systems without any central authority and with
varying computational power at each machine. In these systems, distributed computing nodes of
equal roles and capabilities exchange information and services directly with each other. The big
advantage of P2P systems is that the resources of many users and computers can be brought
together to yield large pools of information and significant computing power and storage space.

Furthermore, because computers communicate directly with their peers, network bandwidth
is better utilized. A lot of applications are based on P2P systems. The most popular one is file
sharing. But there are also storage, group communication and computing applications.

The goal was to study semantic file systems. We focused on Pastis, a peer-to-peer file
system prototype based on an open-source implementation of Pastry/PAST P2P system. As P2P
systems are becoming more and more popular, an analysis on how to bring together semantic and
P2P file systems is a relevant topic.

The main contribution of this paper is to show that combining semantic approach and P2P
file system is possible and it can be implemented reasonably in practical terms.

2. APPROACHES OF SEMANTIC FILE SYSTEM ARCHITECTURES

File semantics can be seen on various levels:
 definitional (e.g file extension)
 associative (e.g keywords in file's contents)
 structural (e.g. physical and logical organization of the data, including intra- and

inter-file relationships)
 behavioral (e.g. viewing and modification semantics, change management)
 environmental (e.g creator, revision history) or other information related to the

file
Current file systems(Microsoft File System, UNIX File System, NFS,etc.) provide some

degree of organized semantic content. However, they are still far from semantic file systems
(SFS) which intend to offer a more extensive and open data model approach with associative,
structural, and behavioral information.

Approaches to SFS architectures can be broadly classified into integrated and augmented
approaches. Integrated approaches incorporate extended semantic features directly within the file
system. Augmented approaches provide these features via an evolutionary path that augments the
traditional file system interface, thus allowing traditional file manipulation interfaces to remain
unchanged.

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

- Integrated Approach

Integrated file systems present the user with a new and improved file system that is
incorporated into existing file systems. These systems provide an integrated data model whereby
file data and file metadata are represented within one data model, and the two are implicitly
synchronized. These systems may provide a type definition language similar to OMG IDL, or
some other means to define object structure and perhaps behavior as well. The IDL is used to
define the file system's data model so that file content and metadata can be stored together (e.g.
file structure, author, revision histories, content indexing, etc.).

The rich data models provide applications with an easier access to metadata and also help
them store efficiently file-related data. However, integrated file systems may require the user to
migrate to a brand new operating system, to a new version of an existing operating system and to
acquire new versions of applications which will access data via the new data model.

We can classify the level of integration with the current file and operating system as either
loosely coupled or tightly-coupled. Both types provide a file system with an integrated view of
data and meta-data (using the defined data model); however, the loosely-coupled systems sit on
top of current file systems providing a separate file store which is inaccessible via any lower
layers of the file system, while tightly-coupled systems are implemented as one or more layers
within the file system.

- Augmented approach

The augmented semantic file system approach provides an evolutionary path to SFS
architectures. It leaves the traditional file system interfaces unchanged, while providing a parallel
content abstraction view of the file's content. Tools layered on the content abstraction can be
more intelligent about querying and manipulating file information(e.g. Microsoft Windows
second search engine, Google Search Desktop). At present, augmented approaches are more
prevalent than integrated approaches, as they place fewer demands on the end-user.

Augmented SFSes (ASFS) provide a content abstraction layer on top of traditional file
systems to facilitate smarter querying and manipulation of files. Most advanced implementations
of augmented SFSes use these content abstractions for either query shipping or index shipping.
Query shipping directs a repository independent user query to the appropriate files (e.g.
Microsoft search engine, Google Search Desktop). Index shipping extracts the contents of files
and makes them available as meta-data (indices) to a user level query system.

Files are abstracted into logical collections, or domains, managed by a domain manager.
Domain managers can be subdivided into a content summarization engine, and a query engine.
The summarization engine executes content summarizer scripts on individual files to extract the
values of type specific attributes for the particular file type. In an index-shipping ASFS
architecture, indices and other meta-information are shipped from domain managers to higher
levels of knowledge brokers using a specific exchange language .This allows the knowledge
brokers to directly process application queries.

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

- Augmented .vs. Integrated Approaches

Integrated and augmented approaches differ not in their vision of greater access to file
content, but in the manner in which they get there. Integrated approaches are the quicker way to
get there, if end-users are willing to accept more drastic changes to their operating systems.
Augmented approaches accept the OS as is (especially the file system) and provide less perfect
implementations of the functionality that a user can expect from an integrated SFS, but with
almost no negative perturbation to the user's current file access capabilities. At the same time,
augmented SFSes can take advantage of progress in the OSes to get progressively closer in
elegance and completeness to the capabilities of an integrated SFS.

To illustrate the point about less perfect implementations, augmented file systems may have
to work with operating systems that do not notify them of changes to files. They may therefore
have to build a custom file polling scheme that is less efficient than file notification. Even after
file notification, it would be left to augment SFSes to detect incremental changes to file content.
Here again, an integrated system may be able to modify the file system to support intermediate
level content abstractions (e.g. model a file as a collection of text chunks).

Another example is providing transactional capabilities in the SFS. An augmented SFS can
easily provide transactional capabilities on the extracted meta-data by storing it in a database. It
cannot, however, maintain ACID properties across the meta-data and the file data, since it has no
control over the ACID properties of file updates. However, if the OS were to support a
transactional file system with event notification for file transactions, an augmented SFS could
implement such ACID properties in a manner similar to multi-database transactions.

In summary, while augmented SFSes are tied down by the current capabilities of their OS
substrate, they can take advantage of subsequent OS improvements (e.g. less latency in
notification of data change, greater access to file content) in much the same way as integrated
implementations. As the actual OS gets closer to the idealized SFS OS, an augmented SFS can
come closer in functionality and implementation to an integrated one.

3. PASTIS FILE SYSTEM

Peer-to-peer systems can be characterized as distributed systems in which all nodes have
identical capabilities and responsibilities and all communication are symmetric.

Pastis is a peer-to-peer file system application that runs on top of Pastry and Past layers.
Before presenting Pastis, we will introduce these two layers.

One of the key problems in large-scale peer-to-peer applications is to provide efficient
algorithms for object location and routing within the network. Pastry is a generic object location
and routing scheme intended to solve that problem.

- Pastry Layer

Based on a self-organizing overlay network of nodes connected to the Internet, Pastry is
intended as general substrate for construction of a variety of peer-to-peer Internet applications

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

like global file sharing, file storage, group communication and naming services. It is completely
decentralized, fault-resilient, scalable and reliable. Moreover, it has good local route properties.

Any computer connected to the Internet and running a Pastry node software can act as a
Pastry node, subject only to application-specific security policies. Each node in the Pastry
network has a unique numeric identifier (nodeId) provided by the system when it joins the
network. For routing purposes, nodeIds and keys (messages keys) are thought as a sequence of
digits with base 2^b.

When presented with a message and a numeric key, a Pastry node efficiently routes the
message to the node whose nodeId is numerically the closest to the numeric key among all live
nodes in the Pastry network. This is accomplished as follows. In each routing step, a node
normally forwards the message to a node whose nodeId shares with the key at least one digit(or b
bits) longer than the prefix shared with the present node's id. If no such node is known, the
message is forwarded to a node whose nodeId shares with the key a prefix as long as the present
node but is numerically closer to the key than the current node's id. The expected number of
routing steps is O(log N) where N is the number of Pastry nodes in the network. At each Pastry
node along the route that a message takes, the application is notified and may perform
application-specific computations to the message.

Pastry seeks to minimize the distance messages travel. Each pastry node keeps track of its
immediate neighbors in the nodeId space with a neighborhood set as well as a routing table and a
leaf set, and notifies application of new nodes arrival, node failures and recoveries. Because
nodeId is randomly assigned, with high probability, the set of nodes with adjacent nodeIds is
diverse in geography, ownership,etc. Each entry in the routing table contains the IP address of
one of the many potential nodes whose nodeId has the appropriate prefix.If no such node is
found, the entry is left empty. The neighborhood set M contains the nodeIds and IP addresses of
the |M| nodes that are closest (according to the proximity metric) to the local node. The leaf set L
is the set of nodes with the |L| / 2 closest larger nodeIds and the |L| / 2 nodes with the closest
smaller nodeIds, relative to the present node's nodeId.

- PAST Layer

PAST is an Internet-based, peer-to-peer global storage utility built on Pastry, which aims to
provide strong persistence, high availability, scalability and security. It is a self-organizing peer-
to-peer Internet application.

The PAST system is composed of nodes connected to the Internet, where each node is
capable of initiating and routing clients requests to insert or retrieve files. Inserted files are
replicated on multiple nodes to ensure persistence and availability. Additional copies of popular
files may be cached on any PAST node to balance load query.

A storage utility like PAST is attractive for several reasons. First, it exploits the multitude in
diversity (geography, ownership, administration, jurisdiction, etc.) of nodes of the Internet to
achieve strong persistence and high availability. A global storage utility also facilitates the
sharing of storage and bandwidth, thus permitting a group of nodes to jointly store or publish
content that exceeds the capacity of any individual node.

PAST differs from conventional file systems in that the files it stores are all associated with
a quasi unique field that is generated at the time of the file's insertion in the system. Therefore,
files inserted into PAST are immutable since a file cannot be inserted several times with the

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

same fileId. Files can be shared at the owner's discretion by distributing the fileId (potentially
anonymous) and, if necessary, a decryption key. PAST does not support a delete operation.
Instead, the owner of a file may reclaim the storage associated with the file, which does not
guarantee that the file will be unavailable. These weaker semantics avoid agreement protocols
between the nodes storing the file.

An important issue in P2P systems is security. The inherently unsafe nature of the resources
used in P2P systems, i.e the Internet, the computers running the P2P software arises a great
number of security issues that must be taken into account. The minimum security guarantee is
the integrity of the objects stored by the system. In PAST, security is achieved with the use of
smartcards that every node and user holds and cryptographic techniques such as one-way hash
functions and digital signatures. A private/public key is associated with each smartcard. The
smartcards generate and verify various certificates used during request and reclaim operations
and they maintain storage quotas allowed to each client.

Before a file is inserted in the PAST system using Pastry (presented earlier), a file certicate
is generated which contains an assigned fileId, a replication factor k, a random salt, a
cryptographic hash of the file's contents and the insertion date. The replication factor k depends
on the availability and persistence requirements of the file and may vary between files. The fileId
is computed as a secure hash (SHA-1) of the file name , the owner's public key and a randomly
chosen salt.

When a file is inserted in PAST, Pastry routes the files to the k nodes whose nodeIds are
numerically the closest to the 128 most significant bits of the file identifier (fileId). Each of these
nodes then stores a copy of the file. A lookup request of a file is routed towards the live node
whose nodeId is numerically the closest to the requested fileId.

- Pastis' design

Pastis is a highly scalable, completely decentralized multi-writer peer-to-peer file system
built on PAST and Pastry underlying layers.

As a peer-to-peer file system, it offers the opportunity to share a given file or portion of the
file system between an arbitrary number of nodes and users connected on the Internet. Pastis
differ from other peer-to-peer file systems proposed by different research groups in that it is
designed to scale to hundreds of thousands of nodes and offer read-write access to a large
community of users. Moreover, modifications in the original open-source implementation of
Past/Pastry have been made to increase performance by reducing network communication.

For each file, the system stores an inode-like object which contains the file's metadata, much
like the information found in a traditional inode. Each inode is stored in a Past Public-Key Block
(PKB). The corresponding private-public key pair is generated when the file described by this
inode is created, and is stored encrypted within the inode itself. File and directory contents are
stored in fixed-size immutable blocks named Past Content- Hash Blocks (CHBs). The address of
each CHB block is obtained from the hash of the block's contents and is stored within the file's
inode block pointer table. Single, double and triple-indirect blocks are used to limit the size of

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

the inode's block pointer table. The contents of a directory are stored in the same way as those of
a regular file. Each directory inode points to a set of CHBs containing the directory entries,
which consist basically of a file name and the Past address of the corresponding inode. PKBs and
CHBs are inserted into Past DHT(Distributed Hash Table) – abstraction offered by the Pastry
network. The DHT abstraction provides the same functionality as a traditional hash table, by
storing the mapping between a key and a value. This interface implements a simple store and
retrieves functionality, where the value is always stored at the live overlay nodes/s to which the
key is mapped by the KBR layer. Values can be objects of any type. In the case of Pastis, these
objects are blocks (PKBs and CHBs).

A distributed hash table (DHT) provides two operations: put (key, value) and value = get
(key). In Pastis, the key of a CHB is a hash of the block's contents and that of a PKB is the public
key associated with the inode stored.

Security in the file system is achieved by signing a file inode before storing it in a PKB and
by associating a CHB with a key obtained from hash functions. Modifying a file or directory in
Pastis requires updating the PKB in which its inode is stored, but it is also involves the insertion
of new CHBs reflecting the newly written data.

Pastis file system support two consistency models: close-to-open consistency and a variant
of read your- writes models. The close-to-open consistency model consists in not propagating
local write operations until the file is closed. Similarly, once a file has been opened, the local
client need not check whether the file has been modified by other distant clients. A cached copy
is used until the file is closed. This model requires that the latest version of a file be retrieved.
The read-your-writes model ensures that read operations always reflect all previous local writes.

The main modification made by the Pastis file system to the PAST/Pastry implementation is
the introduction of a constraint over the block's metadata when performing a Past lookup call.
This constraint allows to choose among the potential replica encountered by the Past lookup
message. In this way, if the first replica encountered does not meet the required criteria, the
messages continues its path until another valid replica is found, or it returns an error message to
the client. In this case (error message), all inode replicas are retrieved and the client will be able
to keep the one with the most recent timestamp.

4. INTEGRATION OF SEMANTICS IN PASTIS

Bringing together a semantic and a peer-to-peer file system is a relevant topic. The resulting
system will provide rapid attribute-based access to the system's contents and take advantage of

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

the interesting storage capacity provided by an arbitrary large number of computers connected to
the Internet.

As we mentioned earlier, the whole Pastis system is made of three layers: the Pastry layer
for the routing of messages, the Past layer for replication and storage management and the Pastis
file system. As adding a semantic approach to Pastis file system will consist in managing files'
metadata, may think that the best way to implement it would be to work in the Pastis layer. The
advantage of this solution is that the other two underlying layers will remain unchanged, then
avoiding complex changes to the current Pastis system. The top layer will be the only one
carrying the semantic approach.

The deep study of Pastis allowed us to identify locations where intervention could be made
in order to integrate semantics. Integration of semantics in Patris can be as follow:

1. First, implement simple changes in the current structure by adding Java semantic
objects to carry some metadata and linking them to the current classes. Metadata
will include simple attributes like the file's owner, creation date, last modification
date. These attributes can be easily obtained

2. Second, increase the metadata size with a lot more attributes
3. Third, develop an interface between the file system and indexing tools (filters) that

already exist. These filters will take charge of extracting files' attributes and the
interface will generate the corresponding Java semantic objects to store these
attributes.

Thus, in the first phase, the first intervention to be made would be to create a new Java
object containing the semantic attributes. Then, include an class attribute in the “Inode” class
whose type is the Java semantic object created earlier. Indeed, the Inode class is the system's key
class as it is associated with all created files. After that, it is essential to link the new Java
semantic object with the other Java files and interfaces as FileInodeFactory.java,
DirInodeFactory.java and SymlinkInodeFactory.java. Finally, all the semantic attributes should
be stored in a table in which links are made between an attribute and all the corresponding
blockIds.

Once this work achieved, a great step towards semantic approach will be made. The second
and third phases presented earlier will then be able to be implemented.

5. CONCLUSION

Semantic file systems and P2P file systems have a great future because of the large
functionalities and improvements that they provide. Until now, researches on the systems have
been conducted in separate ways. However, as this study of Pastis shows us, it will be a relevant
step to join these two concepts in order to build a completely decentralized system that offers
users the possibility to search contents in an easier and faster way. Pastis file system is a
prototype still under development.

The 1st International Conference on Research and Education – Challenges Toward the Future (ICRAE2013), 24-25 May 2013,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

REFERENCES

F. Picconi, J.M. Busca, P. Sens, “An experimental evaluation of the Pastis peer-to-peer file
system under churn”, February 2007

J.M. Busca, F. Picconi, P. Sens, “Pastis: a Highly-Scalable Multi-User Peer-to-Peer File
System”
A.W. Leung, A.P.Wood, E.L. Miller, “Copernicus: A Scalable, High-Performance Semantic
File System”,October 2009

P.Mohan, Raghuraman, V. S and Dr. Arul Siromoney, “Semantic File Retrieval in File Systems
using Virtual Directories”
S. Faubel, C. Kuschel, “Towards Semantic File System Interfaces”
D. Margo,R. Smogor,”Using Provenance to Extract Semantic File Attributes”
M. Mahalingam, C. Tang, Z. Xu,“Towards a Semantic, Deep Archival File System”, 2002

D.K. Gifford, P. Jouvelot1, M. A. Sheldon, J. W. O’Toole, Jr, “Semantic File Systems”
http://regal.lip6.fr/spip.php?rubrique18

http://www.objs.com/survey/OFSExt.htm

