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Abstract

This paper presents the theory and algorithms for computing fractals from Iterated Function
Systems ( IFS ). The algorithms presented are the Deterministic Algorithm and the Random
Iteration Algorithm in the space ℝ ( = 2 ) with the Hausdorff metric. The Hausdorff metric is
the most natural metric in comparing objects in an ideal geometric space, like the fractal objects
illustrated in the paper. These algorithms will illustrate through visual means. The fundamental
property of an Iterated Function System is that each IFS determines a unique attractor, which is
typically a fractal. Any set of affine transformations and an associated set of probabilities
determines an Iterated Function System. These probabilities play an important role in the
computation of images  of the attractor of an Iterated Function System using the Random
Iteration Algorithm. They play no role in the Deterministic Algorithm. One of the advantages of
using an Iterated Function System is that the dimension of the attractor is often relatively easy to
estimate in terms of the defining contractions. A dimension contains much informacion about the
geometrical properties of a set. This paper discusses about the Hausdorff dimension and  box
dimension of the attractor of an Iterated Function System consisting of contractions that are
similarities. Finally, this paper gives construction of some fractals by Iterated Function Systems
and finds the Hausdorff and box dimensions of some self-similar fractals.
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1. Introduction

The fractal, as a mathematical phenomenon, dates back to the Weierstrass nowhere differentiable
continuous function (Figure 7), to the classic Cantor set (Figure 8), to the Hilbert space filling
curve (Figure 9), and even beyond. The term fractal, which means broken or irregular fragments,
was originally coined by Mandelbrot[1] to describe a family of complex shapes that possess an
inherent self-similarity or self-affinity in their geometrical stucture. Fractal geometry provides a
general framework for the study of such irregular sets. Fractal geometry can be used to make
precise models of physical structures from ferns to galaxies[2]. A fractal is a geometrical object
characterized by two fundamental properties: self-similarity and Hausdorff-Besicovitch
dimension. A self-similar object is exactly or approximately similar to a part of itself and that
can be continuously subdivided in parts each  of which is a reduced-scale copy of the whole. The
fractal dimension of a set is a number that tells how densely the set occupies the metric space
which it lies. The Hausdorff-Besicovitch dimension of bounded subset of ℝ is another real
number that can be used to characterize the geometrical complexity of bounded subsets of ℝ .



Today’s computers not only enable us to view fractals as amazing mathematical objects but also
furnish new ways to model the real world[3]. A fractal can be generated by an algorithm because
of self-similarity on every scale. Iterated function systems (IFS) represent an extremely versatile
method for conveniently generating a wide variety of useful fractal structures [4][2].

2. The fractal theory and applications

Fractal geometry offers very important tools for describing and analyzing irregularity which can
be classified as new regularity, seemingly random but with precise internal organization[5].
Fractal geometry explicitly uses the concept of observation scale in building of an object. An
object is generated by repeating a process using a sequence of scales. However, all scales in a
fractal are considered equivalent and objects at different scales are indistinguishable. This feature
of fractals, called ‘self-similarity’, is perhaps their most important property. Many sets may be
constructed using recursive procedures. For example the Sierpinski triangle is obtained by
repeatedly removing equilateral triangles from an initial equilateral triangle of unit side-length
(Figure 1)

Figure 1. Construction of the Sierpinski triangle ( ( ) = ( ) = )

The notion of dimension is central to fractal geometry. The definition  of Hausdorff dimension is
the oldest and probably the most important. The advantage of Hausdorff dimension can be
defined for any set. The disadvantage of Hausdorff dimension is that in many cases it is hard to
calculate by computational methods. In mathematics, no universal definition of fractal dimension
exists and several definitions of fractal dimension may lead to different results for the same
object.



Figure 2 shows that the shape can be decomposed into = 3 pieces, each scaled by a factor of= , so  similarity dimension (the fractal dimension) can be calculated by the equation:= ( )( )= ( )( )= ≈ 1.589
Figure 2. Sierpinski triangle

Box-counting dimension is one of the most widely used dimensions. Its popularity is largely due
to its relative case of mathematical calculation and empirical estimation[6].
Let be any non-empty bounded subset of ℝ and let ( ) be the smallest number of sets of
diameter at most which can cover . The box-counting dimension of is given by the
formula: ( ) = lim → ( )( ) = lim → ( )( ) .
To find the box dimension of a plane set we draw a mesh of squares or boxes of side and
count the number ( ) that overlap the set for various small . The dimension is logarithmic
rate at which ( ) increases as → 0, and may be estimated by the gradient of the graph of( ) against – .
Figure 3 shows the box-counting method for the Koch curve. Covering the Koch curve with
smaller and smaller boxes, from the relation ( ) = 3 ∙ 4 , we can compute the exact value
of the Koch curve: = lim →∞ logN( )log( 1 )

= lim → ( ( ) )( ( ) )
= lim → ( 3∙4 −1)( )
=

( )( ) ≈ 1.261



Figure 3. Covering the Koch curve with box size = ; = ; =
One of the advantages of using an iterated function system (IFS) is that the dimension of the
attractor is often relatively easy to calculate in terms of the defining contractions.
Let be a closed subset of ℝ , often = ℝ . A mapping : → is called a contraction on
if there is a number with 0 < < 1 such that | ( ) − ( )| ≤ | − | for all , ∈ . If
equality holds, | ( ) − ( )| = | − |, then transforms sets into geometrically similar sets,
and is called contracting similarity.
A finite family of contractions ={ , , … , }, with ≥ 2, is called an iterated function
system or IFS. A non-empty compact subset of is called an attractor (or deterministic
fractal) for the IFS if: = ⋃ ( ).
The fundamental property of an iterated function system is that it determines a unique attractor,
which usually is a fractal.
If , , … , : ℝ → ℝ are similarities ( | ( ) − ( )| ≤ | − | where 0 < < 1, is
called ratio of ), each transforms subsets of ℝ into geometrically similar sets. The
attractor of such a collection of similarities is called a self-similar set, being a union of a number
of smaller similar copies of itself. See figures 1 and 4.

.…

Iteration 1 Iteration 2            Iteration 3
Figure 4. Construction of the von Koch curve F. At each stage, the middle third of each interval
is replaced by the other two sides of an equilateral triangle.



A self-similar set has Hausdorff and box dimensions equal to the value of satisfying∑ = 1.
A transformation : ℝ → ℝ is called an affine transformation if is of form ( ) = ( ) +
where is a linear transformation on ℝ ( represented by an × matrix) and is a vector inℝ . If an IFS consists of affine contractions { , , … , } on ℝ , the attractor is called a
self-affine set. Two algorithms for computing fractals from Iterated Function Systems ( IFS ):
the deterministic algorithm and the random iteration algorithm , will illustrate through visual
means. We restrict attention to IFS of form {ℝ ; : = , 2, … , },where each mapping is an

affine transformation. An affine transformation, , defined by = + , where, , , , , are real number, such that , , control rotation and scaling, while
control linear translation.

The deterministic algorithm is based on the idea of directly computing a sequence of sets
{ = ° ( )} starting from an initial set . An IFS ={ , , … , }with probabilities= { , , … , } is an IFS with a positive number associated to each transformation, the total
sum of the probabilities is 1 ( > 0 for all = 1, 2, … , and ∑ = 1 ). These probabilities
play an important role in the computation of images of the attractor of an IFS using the random
iteration algorithm. They play no role in the deterministic algorithm.
We illustrate the deterministic algorithm for an IFS whose attractor is a Koch curve, through
Figures 5 and 4.

Figure 5. The first iteration of the Koch curve

The first iteration for the Koch curve consists of taking four copies of the horizontal line

segment, each scaled by = . Two segments must be rotated by 60 °, one counterclockwise and

one clockwise. Along with the required translations, this yields the following IFS:

= 00 , scale by

= √
√ + , scale by , rotate by 60 °

= √
√ + √ , scale by , rotate by −60 °



= 00 + , scale by . The fixed attractor of this IFS is the Koch curve ( in

Figure 4 ).
Figure 6 shows the result of running the random iteration algorithm for increasing numbers of
iterations whose attractor is a fern.

Figure 6. The result of running the random iteration algorithm for increasing numbers of
iterations. The randomly dancing point starts to suggest the structure of the attractor  of the IFS
given in Table 1.

Table 1. IFS code for fern
S p
1 0 0 0 0.16 0 0 0.01
2 0.85 0.04 -0.04 0.85 0 1.6 0.85
3 0.2 -0.26 0.23 0.22 0 1.6 0.07
4 -0.15 0.28 0.26 0.24 0 0.44 0.07

3. Conclusion

This paper presented a short overview of the Iterated Function Systems ( IFS ), Two algorithms
for computing fractals from Iterated Function Systems have been illustrated through visual
means. The self-similar nature of many fractals comes from the prescribed algorithm for the
construction of the fractal and can be viewed  as a transformation of some metric space. For
example, the Cantor set can be viewed as the contraction and translation of an interval on the real
line. Finally, this paper gives construction of some fractals by Iterated Function Systems and
finds the Hausdorff and box dimensions of some self-similar fractals.



Figure 7. Weierstrass function. The plots show
for = 2(red), = 3(green) and 4(blue),

Figure 8. The first few stages , , … ,
in the construction of middle-thirds Cantor set

Figure 9. The Hilbert curve
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