
ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

BUILDING WORKFLOW DIAGRAMS WITH SVG, HTML5, CSS3 AND

JAVASCRIPT

Dhori TERPO1, Endri XHINA2, Roland VASILI3

1University “E. Çabej”, Faculty of Natural Sciences, Department of Mathematics &

Informatics, Gjirokastra, Albania, dhterpo@uogj.edu.al
2 University of Tirana, Faculty of Natural Sciences, Department of Informatics,

Tirana, Albania, endri.xhina@fshn.edu.al
3University “E. Çabej”, Faculty of Natural Sciences, Department of Mathematics &

Informatics, Gjirokastra, Albania, rvasili@uogj.edu.al

Abstract

According to Workflow Management Coalition (WfMC) , workflow is a term used to describe

the automation of a business process, in whole or part, during which documents, information

or tasks are passed from one participant to another for action (activities), based to a set of

procedural rules. To a software developer, the word workflow, typically conjures up images of

a highly graphical environment where complex business rules are declared visually rather than

entirely in code. Individual tasks are organized into an appropriate sequence, and branching

and looping decision are declared to control the flow of execution between tasks. In this paper

we will present the usage of SVG, HTML5, CSS3 and JavaScript for the development of a GUI

web interface that allow us to easily design and model the tasks of a workflow process. A

comparison of the features that the above technologies provide for symbolizing workflow

statuses and connector steps will be presented in an example driven manner.

Keywords: Workflow, Html5, Css3, JavaScript, SVG

1. The need for web graphic interface for the building of a workflow.

The Workflow Management Coalition (WfMC, 1999) defines workflow as the automation of

a business process, in whole or part, during which documents, information or tasks are passed

from one participant to another for action, according to a set of procedural rules.

Business processes in the today’s business world are constantly changing, unpredictable,

volatile, and seems to become more complex every day. Building workflow from internet gives

us the possibility to quickly adapt to new requirements by changing or improving the steps and

activities of business process, irrespective of geographic location, away from office, in time,

without cost of installation of any program and just by simply having access to internet.

2. Available Tools.

SVG and HTML5 Canvas are both web technologies that allow you to create rich graphics

inside the browser, but they are fundamentally different.

SVG is used to describe Scalable Vector Graphics, a retained mode graphics model that persist

in an in-memory model. According to W3C (2011), SVG is a language for describing two-

dimensional graphics in XML. SVG allows for three types of graphic objects: vector graphic

shapes (e.g., paths consisting of straight lines and curves), images and text. Graphical objects

can be grouped, styled, transformed and composited into previously rendered objects. The

feature set includes nested transformations, clipping paths, alpha masks, filter effects and

template objects.

http://www.w3.org/TR/SVG/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

SVG drawings can be interactive and dynamic. The Document Object Model (DOM) for SVG,

which includes the full XML DOM, allows for straightforward and efficient vector graphics

animation via scripting.

HTML5 Canvas is an immediate mode bitmapped area of the screen that can be manipulated

with JavaScript (Fulton & Fulton, 2013). Immediate mode refers to the way the canvas renders

pixels on the screen. HTML5 Canvas completely redraws the bitmapped screen on every frame

by using Canvas API calls from JavaScript. As a programmer, your job is to set up the screen

display before each frame is rendered so that the correct pixels will be shown.

The basic HTML5 Canvas API includes a 2D context that allows a programmer to draw various

shapes, render text, and display images directly onto a defined area of the browser window.

You can apply colours, rotations, gradient fills, alpha transparencies, pixel manipulations, and

various types of lines, curves, boxes, and fills to augment the shapes, text, and images you

place onto the canvas.

3. SVG Web Graphic.

3.1 Development history.

SVG was developed by the W3C SVG Working Group starting in 1998, after Macromedia and

Microsoft introduced Vector Markup Language (VML) whereas Adobe Systems and Sun

Microsystems submitted a competing format known as PGML. The working group was chaired

by Chris Lilley of the W3C. SVG 1.0 became a W3C Recommendation on 2001-09-04. SVG

1.1 and SVG mobile Profiles (SVG Basic and SVG Tiny) were approved as W3C

recommendations in January 2003. SVG 1.2 is the specification currently being developed and

is available in draft form. It aims at introducing new features which include the addition of

native state-of the-art text wrapping and flowing, SMIL integration enhancements (including

audio and video), and miscellaneous DOM enhancements etc. Today, the SVG 1.1

specification forms the core of the current SVG developments and many implementations are

already available.

3.2 Why SVG?

There are a number of reasons why SVG is ideally suited to the web platform:

 SVG images can be created and edited with any text editor

 SVG images can be searched, indexed, scripted, and compressed

 SVG images are scalable

 SVG images can be printed with high quality at any resolution

 SVG images are zoomable (and the image can be zoomed without degradation)

 SVG is an open standard

 SVG files are pure XML

3.3 SVG Language.

3.3.1 SVG Structure.

In every SVG file, the content is enclosed with the svg element’s tags: <svg>…</svg>. All

SVG content must appear between these two tags. The only data that should appear outside of

these two tags will be XML data defining the document type and nature.

Thus, one of the simplest SVG documents that you can create is shown in listing 3.1.

Listing 3.1 SVG structure

<?xml version="1.0"?>

 <svg xmlns="http://www.w3.org/2000/svg">

</svg>

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/2004/WD-SVG12-20040318/

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

In order to use an SVG Graphic within HTML5, you can:

 copy/paste SVG code within HTML code (inlining)

 use the HTML img tag

 use HTML object tag

 use the HTML iframe tag

 use CSS (background images)

 including SVG within SVG using the image tag.

3.3.2 Basic SVG shapes elements.
The basic SVG shapes elements (Watt & Lilley, 2002) that describe commonly used graphic

shapes are:

Line

Draws a line from the starting point (start-x/start-y) to the end point (end-x/end-y).

<line x1="start-x" y1="start-y" x2="end-x" y2="end-y" />

The listing 3.2 shows the code for drawing a black line.

Listing 3.2 Drawing a line

<svg width="300" height="300" >

 <line x1="100" y1="100" x2="200" y2="100" style="stroke: black;" />

</svg>

Rectangle

Draws a rectangle/square with an upper left corner at (left-x/top-y) and the given width and

height.

<rect x="left-x" y="top-y" width="width" height="height" />

The listing 3.3 shows the code for drawing a black rectangle.

Listing 3.3 Drawing a rectangle

<svg width="300" height="300" >

 <rect x="50" y="50" width="50" height="50" />

</svg>

Circle

Draws a perfect circle with the given radius centered at (center-x/center-y)

<circle cx="center-x" cy="center-y" r="radius" />

The listing 3.4 shows the code for drawing a circle.

Listing 3.4 Drawing a circle

<svg width="300" height="300" >

 <circle cx="100" cy="50" r="50" style="stroke: black; fill: none;" />

</svg>

Polyline

Draws a series of connected lines described by x/y point pairs in points.

<polyline points="points" />

The listing 3.5 shows the code for drawing a resistor symbol.

Listing 3.5 Drawing a polyline

<svg width="300" height="300" >

 <polyline points="5 20, 20 20, 25 10, 35 30, 45 10, 55 30, 65 10, 75 30, 80 20, 95 20"

style="stroke: black; stroke-width: 2; fill: none;" />

</svg>

http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work
http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work
http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

Polygon

Draws an arbitrary closed polygon outlined by x/y point pairs in points.

 <polygon points="points" />

The listing 3.6 shows the code for drawing a parallelogram.

Listing 3.6 Drawing a polygon

<polygon points="30,70 60,70 45,100 15,100"

style="fill: red; stroke: black;"/>

Path

A path is defined by including a ‘path’ element which contains a d="(path data)" attribute,

where the ‘d’ attribute contains the moveto, line, curve (both cubic and quadratic Béziers)

, arc and closepath instructions.

The listing 3.7 shows the code for drawing a black triangle.

Listing 3.7 Drawing a path

<svg width="300" height="300" >

 <path d="M150 0 L75 100 L225 100 Z" />

</svg>

Text

The <text> element allows positioning and graphic styling of the text.

Listing 3.8 shows the code for drawing a simple text.

Listing 3.8 Drawing a simple text

<svg width="300" height="300" >

 <text x="50" y="50">Simplest Text</text>

</svg>

3.3.3 SVG Interactivity.

SVG drawings can be interactive and dynamic. The SVG has its own SVG DOM. The SVG

DOM is a language-neutral Application Programming Interface (API), which gives any

programming language access to the parts of the SVG document. Every SVG element and its

attributes can be accessed and manipulated using scripts. The most commonly used scripting

language is JavaScript. Using JavaScript we can create elements on the fly, change elements,

remove elements, and re-order the DOM –graph. The most useful methods for modifying an

SVG document are:

 getElementById

 getStyl

 setProperty

 setAttribute

 getAttribute

 cloneNode

We can write a script in JavaScript to interact with an SVG graphic. Interaction occurs when

graphic objects respond to events. The basics of using a scripting language in SVG require

using the <script> element to enclose the script and setting the type attribute of the <script>

element.

Script consists of functions that are called by events that are triggered by elements in SVG.

Objects can respond to mouse events associated with clicking the mouse button: click,

mousedown, and mouseup; events associated with moving the mouse: mouseover, mouseout,

and mousemove; events associated with an object's status: load (the object has been fully parsed

and is ready to render); and the non-standardized events associated with pressing keys:

keydown and keyup.

http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work
http://www.w3.org/TR/SVG11/paths.html#PathElement
http://www.w3.org/TR/SVG11/paths.html#DAttribute
http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work
http://stackoverflow.com/questions/18409953/how-does-the-following-code-snippet-work

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

To allow an object to respond to an event, we add an oneventName attribute to the element in

question. The value of the attribute will be a JavaScript statement, usually a function call. This

function usually takes the reserved word evt as one of its parameters. The evt has properties

and methods that describe the event that has occurred.

The listing 3.9 demonstrates the use of the SVG script tag. In this code, we use JavaScript to

change the radius of the SVG <circle> element.

Listing 3.9 Changing the radius of a circle

<svg width="100" height="100" viewBox="0 0 100 100"

 xmlns="http://www.w3.org/2000/svg">

 <script type="text/javascript">

 // <![CDATA[

 function change(evt) {

 var target = evt.target;

 var radius = target.getAttribute("r");

 if (radius == 15) {

 radius = 45;

 } else {

 radius = 15;

 }

 target.setAttribute("r",radius);

 }

 //]]>

 </script>

 <circle cx="50" cy="50" r="45" fill="green"

 onclick="change(evt)" />

</svg>

4. Using SVG to draw workflows diagrams.

Drawing workflows diagrams requires certain features that are well implemented on SVG such

as:

 Dynamically generated SVG diagrams based on server side data such as databases or

other files.

 Drawing complex paths.

 Animating graphic objects within the diagram.

 Changing the diagram as a response to browser events.

4.1 Dynamically generated diagrams with SVG.

The listing 4.1 represents a php script that generates an SVG graph which includes some of the

basic elements for drawing a diagram: a circle, a polyline, a polygon and text (see figure 4.1).

Listing 4.1 Dynamically generated diagrams with SVG

1. <?php

2. header("Content-type: image/svg+xml");

3. echo '<?xml version="1.0" standalone="no"?>';

4. echo '<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

5. "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">';

6. echo

7. '<svg xmlns="http://www.w3.org/2000/svg"

8. xmlns:xlink="http://www.w3.org/1999/xlink"

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/circle

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

9. width="300px" height="300px">';

10. echo "

11. <title>Small SVG example</title>

12. <circle id='rrethi' cx='120' cy='150' r='60' fill='#F0F0F0'>

13. <animate attributeName='r' from='2' to='80' begin='0'

14. dur='3' repeatCount='indefinite' /></circle>

15. <rect x='19' y='37' fill='#52B848' stroke='#000000' stroke-miterlimit='10' width='80'

height='59' id='greenBlock' />

16. <polyline points='120 30, 25 150, 290 150' id='vije'

17. stroke-width='4' stroke='brown' fill='none' />

18. <polygon points='210 100, 210 200, 270 150' id='pol'

19. fill='green' />

20. <text id='mesazh' x='60' y='250' fill='blue'>Hello, World!</text>

21. </svg> ";

22. ?>

In line 2 an information is sent to the browser identifying the content-type of the data as

image/svg using the php function header ("Content-type: image/svg+xml");.

Afterwards the output is sent to the browser through echo commands which allows to send to

the browser data which could be selected by a database.

The animate command is used at the circle svg element to change its radius size from 2 to 80

pixels with a delay between iterations of 3 milliseconds (dur=3). The animation starts

immediately on page load (begin='0') and repeats continuously (repeatCount='indefinite').

Figure 4.1 Dynamically generated diagrams with SVG

4.2 Drawing complex paths in SVG.

SVG is reach with elements to draw complex lines. This functionality is offered by the

following elements:

 Polyline

 Path

 Beziers Curve

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

4.3 Animating objects within the diagram.

Graphic Animation is the process of changing the attribute(s) of a graphic object. In SVG it is

very easy to implement animation. We have given a first example of animating the radius of a

circle. More complex animations, especially concurrently animating several attributes or

animating the form of lines, which are the connecting backbone of the workflow diagram are

also possible in SVG.

From the listing 4.1 changing the code in line 15 with the code below:

<rect x='19' y='37' fill='#52B848' stroke='#000000' stroke-miterlimit='10' width='80'

height='59' id='greenBlock' >

<animateTransform

 attributeName="transform"

 begin="0s"

 dur="20s"

 type="rotate"

 from="0 60 60"

 to="360 60 60"

 repeatCount="indefinite"

 />

</rect>

and the code in lines 12,13,14 with the code below:

<circle id='rrethi' cx='120' cy='150' r='60' fill='#F0F0F0'>

 <animate attributeName='cx' from='120' to='300' begin='0'

 dur='10' repeatCount='indefinite' />

 <animate attributeName='cy' from='150' to='-20' begin='0'

 dur='10' repeatCount='indefinite' />

 </circle>

will animate simultaneously the position of the circle and will rotate the rectangle (see figure

4.2).

Figure 4.2 SVG simultaneously animation

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

4.4 Changing the SVG diagram on browser events.

The example below (see figure 4.3) will allow the user to choose through an onChange browser

event of an input of type color to assign the color of an element in the diagram.

The JavaScript function in listing 4.2 uses getSVGDocument() method to create an SVG

document object. This SVG document object can be used in a similar manner like the HTML

DOM to access the objects within SVG document or add or remove objects in the SVG

document. The getElementById("pol"); is used to get a pointer on the poligon object and then

uses the setAttribute method of the SVG object to set the fill atribute to the color which is taken

as an argument of the function.

Listing 4.2 Changing the color of svg diagram elements

1. function poligon(choosen_color)

2. {

3. var svgEmbed = document.querySelector("#svgembed");

4. var svg = svgEmbed.getSVGDocument();

5. var p = svg.getElementById("pol");

6. p.setAttribute("fill", choosen_color);

7. }

The listing 4.3 shows an input of type color which is new to HTML5 to allow the user to choose

the color for the polygon.

Listing 4.3 Selecting the color of svg diagram elements

Color the poligon:<input type="color" name="poligon_color"

onChange="poligon(this.value);">

Figure 4.3 Changing the color of svg diagram elements

The above tools and techniques are used to develop a Process Modeler application module, for

a commercial business process automation tool, which is called Smart Processes.1 The figure

4.4 provides a picture of this application.

1 A Demo version of Smart Processes which included Process Modeler can be found at http://www.ictsofts.com

ICRAE2014 Conference- Paper Proceedings, ISSN: 2308-0825

The 2 nd International Conference on Research and Educatıon – “Challenges Toward the Future” (ICRAE2014), 30-31 May 2014,

University of Shkodra “Luigj Gurakuqi”, Shkodra, Albania

Figure 4.4 Process Modeler

5. Conclusions.

Tools for building standard web based workflow diagrams are available without the need of

any additional browser plugins. With HTML5 there are two elements for graphic designing

Canvas and SVG. SVG is a standard language recommended by W3C for 2D graphics on the

web. Native SVG support from modern browsers made it possible to develop dynamic and

interactive graphics on the web with a seamless integration of server side data dynamically.

SVG contains the features that are needed to develop a web based application to design

workflow diagrams. In an example driven approach this article presented the basic graphical

elements for drawing diagrams. Dynamic content, animation and user interaction is also

explained in this article through examples. The above explained tools are used to develop a

Process Modeler application module for commercial business process automation.

6. References.

Fulton, S., & Fulton, J. (2013). HTML5 Canvas.(2nd ed.). O’Reilly Media.

W3C.(2011, August 16). Scalable Vector Graphics (SVG) 1.1 (Second Edition). Retrieved

from http://www.w3.org/TR/SVG/.

Watt, A., & Lilley, Ch. (2002). Svg Unleashed. Sams.

WfMC.(1999).Terminology and Glossary, Document No WFMC-TC-1011. Retrieved from

http://www.wfmc.org/docs/TC-1011_term_glossary_v3.pdf.

